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Abstract

Over the past decade, the paradigm of the World Wide Web has shifted from static web
pages towards participatory and collaborative content production. The main properties of
this user generated content are a low publication threshold and little or no editorial control.
While this has improved the variety and timeliness of the available information, it causes
an even higher variance in quality than the already heterogeneous quality of traditional
web content. Wikipedia is the prime example for a successful, large-scale, collaboratively-
created resource that reflects the spirit of the open collaborative content creation paradigm.
Even though recent studies have confirmed that the overall quality of Wikipedia is high,
there is still a wide gap that must be bridged beforeWikipedia reaches the state of a reliable,
citable source.

A key prerequisite to reaching this goal is a quality management strategy that can cope
both with the massive scale of Wikipedia and its open and almost anarchic nature. This in-
cludes an efficient communication platform for work coordination among the collaborators
as well as techniques for monitoring quality problems across the encyclopedia. This disser-
tation shows how natural language processing approaches can be used to assist information
quality management on a massive scale.

In the first part of this thesis, we establish the theoretical foundations for our work.
We first introduce the relatively new concept of open online collaboration with a particu-
lar focus on collaborative writing and proceed with a detailed discussion of Wikipedia and
its role as an encyclopedia, a community, an online collaboration platform, and a know-
ledge resource for language technology applications. We then proceed with the three main
contributions of this thesis.

Even though there have been previous attempts to adapt existing information quality
frameworks toWikipedia, no qualitymodel has yet incorporatedwriting quality as a central
factor. Since Wikipedia is not only a repository of mere facts but rather consists of full
text articles, the writing quality of these articles has to be taken into consideration when
judging article quality. As the first main contribution of this thesis, we therefore define a
comprehensive article quality model that aims to consolidate both the quality of writing
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and the quality criteria defined in multiple Wikipedia guidelines and policies into a single
model. The model comprises 23 dimensions segmented into the four layers of intrinsic
quality, contextual quality, writing quality and organizational quality.

As a second main contribution, we present an approach for automatically identifying
quality flaws in Wikipedia articles. Even though the general idea of quality detection has
been introduced in previous work, we dissect the approach to find that the task is inherently
prone to a topic bias which results in unrealistically high cross-validated evaluation results
that do not reflect the classifier’s real performance on real world data.

We solve this problem with a novel data sampling approach based on the full article
revision history that is able to avoid this bias. It furthermore allows us not only to identify
flawed articles but also to find reliable counterexamples that do not exhibit the respective
quality flaws. For automatically detecting quality flaws in unseen articles, we present Flaw-
Finder , a modular system for supervised text classification. We evaluate the system on a
novel corpus of Wikipedia articles with neutrality and style flaws. The results confirm the
initial hypothesis that the reliable classifiers tend to exhibit a lower cross-validated perfor-
mance than the biased ones but the scores more closely resemble their actual performance
in the wild.

As a third main contribution, we present an approach for automatically segmenting
and tagging the user contributions on article Talk pages to improve the work coordination
among Wikipedians. These unstructured discussion pages are not easy to navigate and
information is likely to get lost over time in the discussion archives. By automatically
identifying the quality problems that have been discussed in the past and the solutions that
have been proposed, we can help users to make informed decisions in the future.

Our contribution in this area is threefold: (i) We describe a novel algorithm for seg-
menting the unstructured dialog on Wikipedia Talk pages using their revision history. In
contrast to related work, which mainly relies on the rudimentary markup, this new algo-
rithm can reliably extract meta data, such as the identity of a user, and is moreover able
to handle discontinuous turns. (ii) We introduce a novel scheme for annotating the turns
in article discussions with dialog act labels for capturing the coordination efforts of arti-
cle improvement. The labels reflect the types of criticism discussed in a turn, for example
missing information or inappropriate language, as well as any actions proposed for solving
the quality problems. (iii) Based on this scheme, we created two automatically segmented
and manually annotated discussion corpora extracted from the Simple English Wikipedia
(SEWD) and the English Wikipedia (EWD). We evaluate how well text classification ap-
proaches can learn to assign the dialog act labels from our scheme to unseen discussion
pages and achieve a cross-validated performance of F1 = 0.82 on the SEWD corpus while
we obtain an average performance of F1 = 0.78 on the larger andmore complex EWD corpus.
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Zusammenfassung

In den vergangenen zehn Jahren hat sich der Fokus des World Wide Web von primär sta-
tischen Webseiten hin zu kollaborativ erstellten Inhalten verlagert. Die wichtigsten Eigen-
schaften dieses neuen Paradigmas sind eine niedrige Veröffentlichungsschwelle und wenig
oder gänzlich fehlende redaktionelle Kontrolle. Wenngleich dadurch die Vielfalt und Ak-
tualität der verfügbaren Informationen verbessert wurde, fördert es zugleich auch die He-
terogenität der Webinhalte hinsichtlich ihrer Qualität. Wikipedia ist das Paradebeispiel für
eine große, erfolgreiche, kollaborativ erstellte Ressource, die den Geist freier Kollaboration
widerspiegelt. Auch wenn jüngste Studien bestätigt haben, dass dieQualität vonWikipedia
insgesamt hoch ist, ist es immer noch ein weiter WegWikipedia zu einer zuverlässigen und
zitierbaren Quelle zu machen.

Eine wichtige Voraussetzung zur Erreichung dieses Ziels ist eineQualitätsmanagement-
strategie, die sowohl mit der Größe von Wikipedia und ihrer offenen, nahezu anarchischen
Organisationsstruktur umgehen kann. Eine solche Strategie schließt eine effiziente Kom-
munikationsplattform für die Arbeitskoordination zwischen den Nutzern, sowie Techniken
zur Überwachung von Qualitätsproblemen in der Enzyklopädie mit ein. Diese Dissertati-
on zeigt auf, wie sprachtechnologische Methoden die bestehenden Ansätze zum Informa-
tionsqualitätsmanagement in Wikipedia effektiv unterstützen können. Im ersten Teil der
Dissertation führen wir die theoretischen Grundlagen für unsere Arbeit ein. Wir erörtern
zunächst das relativ neue Konzept der freien Online-Kollaboration unter besonderer Be-
rücksichtigung kollaborativen Schreibens. Vervollständigt wird diese Einführung mit ei-
ner ausführlichen Diskussion der Wikipedia. Auf Basis dieser Grundlagen folgen die drei
Hauptbeiträge der vorliegenden Arbeit.

Wenngleich es bereits Versuche gab, bestehende Frameworks zur Erfassung von Infor-
mationsqualität an die Bedürfnisse der Wikipedia anzupassen, hat bisher kein Modell die
Text- und Schreibqualität als zentralen Faktor berücksichtigt. Da Wikipedia jedoch nicht
nur eine Ansammlung von Fakten ist, sondern aus Volltextartikeln besteht, ist der Text-
und Schreibqualität dieser Artikel eine zentrale Rolle bei den Qualitätsbetrachtungen zu-
zuschreiben. Als ersten zentralen Beitrag dieser Dissertation definieren wir daher ein um-
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fassendes Artikelqualitätsmodell, welches sowohl die Text- und Schreibqualität als auch die
spezifischenQualitätskriterien derWikipedia in einem einzigenModell zusammenführt. Es
umfasst insgesamt 23 Qualitätsdimensionen in den Kategorien intrinsische Qualität , kon-
textbezogene Qualität , Text- und Schreibqualität und strukturelle Qualität .

Im zweiten zentralen Beitrag dieser Arbeit, stellen wir einen Ansatz zur automatischen
Erkennung von Qualitätsmängeln in Wikipedia-Artikeln vor. Auch wenn die Idee hierzu
bereits in früheren Arbeiten beschrieben wurde, haben wir in unseren Experimenten her-
ausgefunden, dass dieser Ansatz von Natur aus anfällig für ein Themenbias ist, welches
zu unrealistisch hohen Werten in der Kreuzvalidierung von Klassifikationsmodellen führt.
Die tatsächliche Leistung auf realen Daten liegt weit unter den Ergebnissen, die in früheren
Arbeiten berichtet wurden. Wir lösen dieses Problem mit einem neuen Samplingverfahren
basierend auf der Artikelrevisionsgeschichte. Dieser Ansatz vermag es nicht nur fehlerhafte
Artikel zu identifizieren, sondern auch zuverlässige Gegenbeispiele zu finden, die nicht die
entsprechenden Qualitätsmängel aufweisen. Zur automatischen Erkennung von Qualitäts-
mängeln haben wir FlawFinder entwickelt, ein modulares System für überwachte Text-
klassifikation. Wir evaluieren das System auf einem Korpus aus Wikipedia-Artikeln mit
Qualitätsmängeln in den Bereichen Neutralität und Stilistik. Die gewonnenen Ergebnisse
bestätigen unsere Ausgangshypothese, dass auf ausgeglichenen Daten trainierte Klassifi-
katoren zwar zu einer geringeren kreuzvalidierten Leistung neigen, jedoch die tatsächliche
Leistung in realen Anwendungsszenarien realistischer widerspiegeln.

Als dritten zentralen Beitrag dieser Arbeit, stellen wir einen Ansatz für die automa-
tische Segmentierung und Klassifikation von Nutzerbeiträgen in Artikeldiskussionsseiten
vor. Es hat sich gezeigt, dass Nutzer der Wikipedia Probleme haben, sich auf diesen un-
strukturierten Diskussionsseiten zurechtzufinden und archivierte Informationen mit der
Zeit nur noch schwer auffindbar sind. Indem wir automatisch die Qualitätsprobleme und
Lösungsvorschläge identifizieren, die in vergangenen Diskussionen erörtert wurden, kön-
nen wir den Nutzern helfen, fundierte Entscheidungen in der Zukunft zu treffen. Der Bei-
trag unterteilt sich in folgende drei Teile: (i) Wir beschreiben einen neuen Algorithmus
zur Segmentierung des unstrukturierten Dialogs auf Wikipedia-Diskussionsseiten mit Hil-
fe ihrer Revisionsgeschichte. (ii )Wir stellen ein neuartiges Annotationsschema für Beiträge
in Artikeldiskussionen vor. Die darin definierten Dialogakte spiegeln wider, welche Kritik
an einem Artikel geäußert wurde, wie zum Beispiel fehlende Informationen oder unange-
messene Sprache, und welche Lösungen vorgeschlagen wurden. (iii ) Basierend auf diesem
Schema haben wir zwei automatisch segmentierte und manuell annotierte Korpora aus Ar-
tikeln der Simple English Wikipedia (SEWD) und der englischen Wikipedia (EWD) erstellt.
Wir nutzen diese Korpora um Klassifikationsmodelle zu trainieren um die Dialogakte in
unbekannten Diskussionsseiten identifizieren zu können. In unserer Evaluation erreichen
wir auf dem SEWD Korpus eine Leistung von F1 = 0.82, während wir auf dem komplexeren
EWD Korpus durchschnittlich F1 = 0.78 beobachten konnten.
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Chapter 1

Introduction

“Begin at the beginning,” the King said gravely, “and go on
till you come to the end: then stop.”

— Lewis Carroll, Alice in Wonderland

User-generated content is the main driving force of the increasingly social web. Partici-
patory and collaborative content production has largely replaced the traditional ways of
information sharing and make up a large part of the daily information consumed by web
users. The main properties of user-generated content are a low publication threshold and
little or no editorial control. While this has positively affected the variety and timeliness
of the available information, it causes an even higher variance in quality than the already
heterogeneous quality of traditional web content.

Wikipedia is the prime example for a successful, large scale, collaboratively created
resource that reflects the spirit of the open collaborative content creation paradigm. One of
the main characters in the popular TV seriesThe Office sums up the main idea of Wikipedia
in the following ironic quote

“Wikipedia is the best thing ever. Anyone in the world, can write anything
they want about any subject. So you know you are getting the best possible
information.”1

In fact, studies (Giles, 2005; Casebourne et al., 2012; Koistinen, 2013) have confirmed that
the overall quality of Wikipedia is high despite its open access policy and lack of rigid reg-
ulation. However, there is still a wide gap that must be bridged before Wikipedia reaches
the state of a reliable, citable source. In the early days of Wikipedia, the main concern of
the community was to increase the coverage of the encyclopedia in order to avoid the prob-
lems of its predecessors, which died of insignificance. Today2, the English Wikipedia alone
1Quote from the TV seriesThe Office , Series 3, Episode 18.
2Feb 28, 2014
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Chapter 1. Introduction

contains as many as 4.5 million articles and the main concern is now “to makeWikipedia as
high-quality as possible. [Encyclopædia] Britannica or better quality is the goal.” (LaVallee,
2009)

In order to achieve this goal and provide the “best possible information”, Wikipedia
requires a quality management strategy that can cope both with the scale of Wikipedia and
its open and almost anarchic nature. Given the fact that less than 10% ofWikipedia users are
responsible for more than 90% of the contributions (Ortega, 2009), this quality management
strategy cannot rely on the many eyes principle alone to sufficiently assure the quality of
all Wikipedia articles. The relatively small core group of active Wikipedians is rather in
demand of technical assistance to ensure that even less popular topics in Wikipedia satisfy
a basic quality standard.

In this thesis, we discuss how natural language processing approaches can be used to
assist the community around Wikipedia in this endeavor. To this end, we consider two
basic strategies, a data-driven approach and a process-driven approach. The data-driven
approach aims at analyzing and modifying the information directly in order to assess and
improve information quality. The latter strategy, on the other hand, aims at improving the
established processes involved in analyzing and maintaining the information in order to
improve the overall quality of the resource indirectly (Sidi et al., 2012).

Following the data-driven strategy, we present an approach to automatically identify
quality flaws in Wikipedia articles using state-of-the-art text classification techniques so
that passive Wikipedia users, who mainly read articles but are not involved in their main-
tenance, can be made aware of potential problems in the articles, while active contributors
can use this information to solve issues in articles they are interested and experienced in.

As a process-driven strategy, we present an approach to improve work coordination be-
tween Wikipedians by automatically segmenting and tagging user contributions on article
Talk pages, the place whereWikipedia users mainly plan the future development of the arti-
cles. These largely unstructured discussion pages are not easy to navigate and information
is likely to get lost over time in the discussion archives. By automatically identifying the is-
sues that have been discussed in the past and the solutions that have been proposed, we can
help users to make informed decisions . The research community can furthermore use this
information to gain insights in the collaborative processes and identify what differentiates
successful work coordination from unsuccessful attempts.

Figure 1.1 shows how the two approaches presented in this thesis relate to each other
and to the information quality management process in Wikipedia. In the following section,
we give an overview of the contributions of this thesis.
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Figure 1.1: Overview of the two approaches to NLP-assisted information quality management in
Wikipedia presented in this thesis.

1.1 Main Contributions

The main contributions of this thesis can be divided into a practice-oriented part, i.e. the
implications of our work for the information quality management process in Wikipedia,
and a theory-oriented part, i.e. the relevance of our contributions to the field of natural
language processing. This section gives an overview of our contributions as well as the
software and datasets that will be made available to the research community.

– Even though there have been previous attempts to adapt existing information quality
frameworks to Wikipedia, no quality model has yet incorporated text and writing
quality as a central factor. Since Wikipedia is not only a repository of mere facts but
mainly consists of full text articles, the writing quality of these articles has to be taken
into considerationwhen judging article quality. We therefore define a comprehensive
article quality model that is based on an information scientific foundation and aims
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to consolidate both the quality of writing and the quality criteria defined in multiple
Wikipedia guidelines and policies into a single model.

– We present a novel corpus of articles with neutrality and style flaws mined from the
English Wikipedia. The corpus contains both articles with the particular flaws and
documents that are reliable examples for articles without these flaws. To the best of
our knowledge, this is the first corpus of this kind which both provides positive and
negative examples for quality flaws.

– For the first time, we establish that automatic quality flaw identification inWikipedia
articles is prone to a topic bias that results in skewed classifiers and unrealistically
high cross-validated evaluation results that do not reflect the classifier’s real perfor-
mance on real world data. We furthermore describe a data sampling approach that is
able to avoid this bias in the training data.

– We introduce FlawFinder – a system for supervised text classification designed for
quality flaw detection. While FlawFinder has been developed particularly for the
flaw detection task, it can be applied to general text classification problems and has
been adapted as a general purpose text classification framework that is described in
appendix A.2.

– We describe an approach for mining a corpus of quality flaw corrections from Wiki-
pedia’s article revision history which can be used as a starting point for identifying
the quality flaws within articles instead of merely tagging whole articles that contain
certain flaws.

– We present a novel algorithm for segmenting the unstructured dialog on Wikipedia
article Talk pages using the revision history. In contrast to the approaches described
in related work which rely on the rudimentary markup and optional user signatures,
our algorithm can reliably extract meta information such as the contributor identity
and post timestamp even though the information is not contained on the actual page.
The algorithm is furthermore able to handle discontinuous turns and inserted replies,
which is out of reach from related work.

– We introduce a novel annotation scheme for annotating the turns in article discus-
sions with dialog act labels in order to capture the coordination efforts of article im-
provement. The labels are intended to reflect the types of criticism discussed in a
turn as well as any actions proposed for solving the quality problems. This reflects
the core purpose of the discourse on the Wikipedia article Talk pages.

– We present two novel corpora of Wikipedia article discussions extracted from the
Simple English Wikipedia (SEWD corpus) and the English Wikipedia (EWD corpus).
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The corpora are segmented and manually annotated with dialog act labels defined in
our annotation scheme.

– We evaluate how well text classification approaches can learn how to assign the dia-
log act labels from our scheme to unseen discussion pages. Such classifiers will enable
novel applications suitable to improve the work coordination processes inWikipedia.
By automatically identifying the problems that have been discussed and the solutions
that have been proposed, we can furthermore gain deeper insights in how the Wiki-
pedia community works and how good work coordination differs from unsuccessful
work coordination.

1.2 Publication Record

Wehave previously published themain contributions of this thesis in peer-reviewed confer-
ence or workshop proceedings of major events in natural language processing and related
fields, such as ACL, EACL, CLEF and WWW. The chapters which build upon these publi-
cations are indicated accordingly. A full bibliography of the author’s publications can be
found in the appendix.

Johannes Daxenberger, Oliver Ferschke, Iryna Gurevych and Torsten Zesch: ‘DKPro TC: A
Java-based Framework for Supervised Learning Experiments on Textual Data’, in:
Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics.
System Demonstrations , pp. 61–66, Baltimore, MD, USA, June 2014. (chapters 5, A.2)

Lucie Flekova, Oliver Ferschke and Iryna Gurevych: ‘What Makes a Good Biography?
Multidimensional Quality Analysis Based on Wikipedia Article Feedback Data’, in:
Proceedings of the 23rd International World Wide Web Conference (WWW 2014) , pp.
855–866, Seoul, Korea, April 2014. (chapter 4)

Oliver Ferschke, Iryna Gurevych and Marc Rittberger: ‘The Impact of Topic Bias on
Quality Flaw Prediction in Wikipedia’, in: Proceedings of the 51st Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers) , pp. 721–730, Sofia,
Bulgaria, August 2013. (chapter 5)

Oliver Ferschke, Johannes Daxenberger and Iryna Gurevych: ‘A Survey of NLP Methods
and Resources for Analyzing the Collaborative Writing Process in Wikipedia’, in Iryna
Gurevych and Jungi Kim (Edts.):The People’s Web Meets NLP: Collaboratively Constructed
Language Resources , Chapter 5, pp. 121–160, Springer, April 2013. (chapters 2,3,6)

Oliver Ferschke, Iryna Gurevych and Marc Rittberger. ‘FlawFinder: A Modular System for
Predicting Quality Flaws in Wikipedia - Notebook for PAN at CLEF 2012’, in: CLEF 2012
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Labs and Workshop, Notebook Papers , Online Proceedings, Rome, Italy, September 2012.
(chapter 5)

Oliver Ferschke, Iryna Gurevych and Yevgen Chebotar. ‘Behind the Article: Recognizing
Dialog Acts in Wikipedia Talk Pages’, in: Proceedings of the 13th Conference of the
European Chapter of the ACL (EACL 2012), pp. 777–786, Avignon, France, April 2012.
(chapter 6)

Oliver Ferschke, Torsten Zesch and Iryna Gurevych. ‘Wikipedia Revision Toolkit:
Efficiently Accessing Wikipedia’s Edit History’, in: Proceedings of the 49th Annual
Meeting of the Association for Computational Linguistics: Human Language Technologies.
System Demonstrations , pp. 97–102, Portland, OR, USA, June 2011. (chapters 3,5,6,A.1)

1.3 Thesis Organization

In the remainder of this chapter, we give an overview of the organization of this dissertation.

Chapter 2 discusses the foundations of open collaboration and introduces the main char-
acteristics of collaborative and open collaborative writing. It furthermore gives a brief
overview of systems for joint online writing and how they can benefit from language tech-
nology.

Chapter 3 introduces the free online encyclopediaWikipedia and defines the terminology
necessary to perform the succeeding analyses. We introduce both the main characteristics
of the encyclopedia and the culture and community that emerged around it. Additionally,
we introduce technological aspects such as the different possibilities to process the content
of Wikipedia.

Chapter 4 discusses the theory of information quality and how it applies to a collabora-
tively created resource such as Wikipedia. We discuss the processes involved in defining
an information quality model and finally adapt an established, generic model to the specific
needs of Wikipedia under particular consideration of text and writing quality.

Chapter 5 presents our novel approach for automatically identifying quality flaws in
Wikipedia based on supervised detection of cleanup templates. These templates are as-
signed to articles by Wikipedia users and identify concrete shortcomings of an article. We
argue that these markers are suitable proxies for quality flaws and, in turn, an adequate
means for quality assessment and the basis for assisting users in quality improvement.
Moreover, we identify a methodological problem in existing approaches for quality flaw
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detection and establish that the flaw prediction task inherently suffers from a topic bias
which has to be accounted for in any machine learning attempt. We describe a solution to
this problem in our approach and present a novel corpus of neutrality and style flaws that
is already controlled for the topic bias.

Chapter 6 introduces our approach to analyzing Wikipedia article discussion pages by
means of dialog act analysis. We develop a scheme for identifying user contributions dis-
cussing quality problems and suggesting actions to solve these problems. We present two
annotated corpora extracted from the Simple English Wikipedia and the EnglishWikipedia
respectively. We furthermore carry out text classification experiments on both corpora in
order to evaluate how well a machine learning algorithm can automatically apply labels to
unseen turns in order to automate the dialog act analysis task.

Chapter 7 draws conclusions from the preceding chapters and summarizes both the solved
problems and the challenges that still remain to be addressed in future work.

1.4 Terminology and Conventions

Unless otherwise specified, any references to Wikipedia andWikipedia content refer to the
EnglishWikipedia. Whenever any specific content on a wiki page is referenced or cited, we
provide the revision or access date of the corresponding page, e.g. http://en.wikipedia.org/
wiki/index.php?oldid=596488753. In cases where a policy or guideline page is referenced as
a concept without referring to the specific content on this page, we provide the shortcut to
the page, e.g. http://en.wikipedia.org/wiki/WP:MOS for the Wikipedia Manual of Style.
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Chapter 2

Open Online Collaboration

“Individually, we are one drop. Together, we are an ocean.”

— Ryunosuke Satoro

In this chapter, we discuss the properties of open collaboration with a focus on collabora-
tive writing. We first identify the main characteristics of this fairly new modus operandi
in joint work and analyze the important factors for implementing a suitable information
quality management strategy with language technology assistance (section 2.1). We then
discuss collaborative writing as a special instance of collaboration, how it differs from in-
dividual writing and how open online collaboration adds additional levels of complexity to
the writing task (section 2.2). We finally provide a brief discussion regarding the require-
ments of systems for collaborative online writing (section 2.3) and conclude the chapter
with a summary of our findings (section 2.4).

2.1 Open Online Collaboration

The term computer supported cooperative work (CSCW) exists since 1984 when it was coined
by Irene Greif and Paul Cashman as the title of a workshop on understanding and support-
ing collaboration (Grudin and Poltrock, 2013). While, in the beginning, CSCW has mainly
focused on the utilization of computer-mediated communication, such as email, to support
online collaboration in research- or corporate workgroups, the field soon transcended these
realms and now increasingly penetrates other aspects of our daily social and work inter-
actions. Most notably, with the rise of the general availability of the Internet, CSCW has
expanded from the confines of small groups to open, heterogeneous communities.

Closed group vs. Open Collaboration. While online collaboration in closed groups often
relies on fixed role and task assignments and is frequently steered by a higher authority,
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open collaboration is an egalitarian and meritocratic process in which everyone who joins
the group can contribute to the best of their ability to an iteratively improving product,
while the merits of each contribution can be publicly discussed by the community. Instead
of assigned tasks and fixed roles, open collaboration is self-organizing to a high degree with
the objective that every collaborator can find their own mode of participation and perform
tasks they are interested in and qualified for.

The difference between closed group and open collaboration is well illustrated by two
metaphors originated in the context of open software development (Raymond, 1999). The
cathedral model compares the collaborative process with the construction of a cathedral
that has to be planned in advance, supervised by experts and carried out by a fixed group
of contractors who collaborate to build a single, final product – the cathedral. This resem-
bles traditional closed-group collaboration, which is often directed at a particular final goal
which is to be reached with a predefined plan and fixed task assignments. If any collabo-
rator fails, the whole project is endangered.

In contrast, the bazaar model compares the collaborative process to a bazaar on which
many people trade their goods without being controlled by a central authority. Eachmarke-
teer has equal opportunities, equal rights and is able to choose the individual contribution
to the community on their own. The bazaar as a whole is complete and functional even with
individual stalls and merchants being absent. This resembles open collaboration, which is
an inherently iterative process without a fixed workflow or static role assignments. The
product organically evolves as a result of swarm creativity, i.e. the aggregated individual
contributions of the changing set of collaborators, and does not necessarily reach a final
state of a finished product but rather remains in constant evolution.

Applications. The range of applications for open online collaboration is wide and often
closely connected to the concept of social networks (Forte and Lampe, 2013). Platforms
embracing the Web 2.0 spirit attract a large crowd of users whose workforce is put to joint
use for the collaborative creation of online maps (e.g. OpenStreetMap3), news (e.g. Slash-
dot4, Digg5), dictionaries (e.g. Wiktionary6) or encyclopedias (e.g. Wikipedia7), just to name
a few examples.

Challenges in Open Collaboration. According to Forte et al. (2012), self-organizing com-
munities have to face three main challenges. First, since participation in open collabo-
ration is usually intrinsically motivated, incentives and motivation play essential roles in
achieving long-term success. New users have to be attracted while current members of the

3http://www.openstreetmap.org
4http://www.slashdot.org
5http://www.digg.com
6http://www.wiktionary.org
7http://www.wikipedia.org
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community must be retained and kept motivated to actively contribute to the collabora-
tive project. Second, it is necessary to bring the people to the work instead of counting on
any individual to self-select the ideal job. In other words, the available work force has to
be distributed and allocated to open tasks. It is necessary for the whole community to be
aware at all times which open issues have to be addressed and where the greatest demand
for contributions is. Since no central management exists in open collaboration, this has to
be achieved by means of collaborative work coordination . Third, since centralized decision
making is unfeasible in very large heterogeneous groups, sub-communities with nested
organizational structures have to emerge which concentrate on particular sets of tasks.
These sub-communities develop their own social dynamics and thereby help to maintain
the morale and trust among their members. Together, the output of the individual sub-
communities contributes to the overall product of the open community. In Wikipedia, for
example, this is mainly achieved with so-called WikiProjects, sub-communities that focus
on particular subject areas or maintenance tasks.

Universal Properties. Even though no two open collaboration communities are alike and
each project has different goals, one can identify universal properties of open collaboration.
The power law of participation implies a long tail of many collaborators with few contribu-
tions and little impact on the system while a small group of elite users is responsible for
the main body of work. Consequently, the overall collaborative system and the product it
produces are mainly shaped by the small groups of experts (Ortega et al., 2008). It further-
more has to be taken into account that the reasons for participation in open collaboration
are different for each individual and that these reasons shape their level of activity and the
type of work they do. It is therefore not sufficient to attract many users but it is rather
important to attract enough users for every critical task (Forte and Lampe, 2013).

Collaboration Support Systems. While open collaboration is not necessarily confined to
the realm of the world wide web, online cooperation is the most common mode of open
collaboration. A key factor for its success is the support by a suitable online collaboration
system that assists the open community in their endeavors. Forte and Lampe (2013) identify
four dimensions of socio-technical systems for open online collaboration that have to be
taken into account. In short, an open online collaboration system has to provide assistance
for the collective production of an artifact, it has to support the social aspects of collabora-
tion and work coordination by providing suitable means of communication, it has to reduce
the complexity in order to lower the entry barrier for new collaborators and has to assist
the development and upkeep of social structures in order to retain the active population of
the community.
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Quality Management. In open, collaborative content production, a key element of suc-
cess is the quality of the content produced by the community. Therefore, a suitable quality
management strategy is an absolute requirement for the success of such a community. We
will address the issue of information quality management in the context of the collabora-
tively created encyclopedia Wikipedia in chapter 4 and discuss in the succeeding chapter
how language technology can assist the process.

2.2 Collaborative Writing

In the narrowest sense, writing is the externalization of natural language in a visual or
tactile form based on a formalized writing system. Rather than looking at the mechanics
of writing, we are interested in the intellectual process of text production, including all
related activities such as brainstorming, idea generation, planning, organizing, drafting and
revising (Rice and Huguley J.T., 1994). In the latter sense, writing is an open-ended design
task without a single correct end result that could be reached in a clearly defined chain of
operations. It rather is a creative process that involves nondeterministic sequences of edits,
revisions, deletions and amendments which finally lead to one of many possible texts that
are suitable solutions for the given writing task (Sharples et al., 1993).

Traditionally, writing is thought of as a process involving a single authorwho iteratively
plans, drafts and reviews his work (Lowry et al., 2004). In order to cope with large-scale
writing tasks in a limited amount of time, authors have, however, always collaborated with
each other. Collaborative writing resembles individual writing in many ways but is inher-
entlymore complex on a social, intellectual and procedural level (Galegher and Kraut, 1994).
While writing is ultimately a process of externalizing thoughts and ideas, a large part of the
writing process takes place in the mind. Collaborating with other writers in the joint goal
to create a single, collaboratively created text therefore inevitably requires externalizing the
otherwise hidden thoughts during the writing process for the sake of work coordination.
However, despite this added complexity, research on collaborative writing has shown that
often the result of good collaboration is more than the sum of its parts (Sharples, 1993).

Several disjunct theories and models for collaborative writing have been developed
across the fields, each with their own terminology. In an attempt to build an interdisci-
plinary taxonomy and nomenclature of collaborative writing, Lowry et al. (2004) identifies
the common aspects of collaborative writing across different fields of research and defines
four basic strategies of joint writing:

Group Single-Author Writing: A single author compiles the results of a collaborative
planning phase. The writing process itself is largely self-directed thus resembling more the
process of individual writing than collaborative writing. (figure 2.1a)
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(a) Group Single-Author (b) Sequential (c) Parallel (d) Reactive

Figure 2.1: Collaborative writing strategies according to Lowry et al. (2004)

Sequential Writing: An iterative writing strategy in which the text is passed on from
group member to group member. Only one author is writing at the same time. The
required work coordination during the active writing phase is minimized, while the
overall planning process and the contributions of the group members can be distributed.
On the downside, social interaction can be limited in this approach. (figure 2.1b)

Parallel Writing: In this strategy, all group members simultaneously work on the same
document. Parallel writing can be divided into horizontal division writing and stratified
division writing. In the former case, each member of the group works on a separate
sub-document which is finally merged into the final document. In the latter case, each
member takes a different role in the writing process, such as editor, author and reviewer,
and processes the document from a different point of view. (figure 2.1c)

Reactive Writing: The most challenging strategy involves concurrent editing of the same
document by all group members. This approach is only viable with suitable support by
the collaboration system and is the main strategy in open online collaboration. It
demands the highest degree of coordination. (figure 2.1d)

While the collaborative aspect in group single-author writing is restricted to the planning
phase of writing, sequential writing involves the incorporation of different writing styles
into a single document. However, sequential writing is only efficient for small groups and
not suitable for larger documents. The output volume of this strategy is furthermore limited
because only a single group member is allowed to actively contribute to the document at a
given point in time. In parallel writing , these problems are solved by distributing the writ-
ing task across all group members allowing everyone to edit simultaneously but in different
sections of the text. This increases the requirements for coordination but makes the task
more efficient at the same time. However, the explicit assignment of authors to sections of
the text also restricts the strategy to small groups. Even though reactive writing is tech-
nically the most challenging strategy with the highest requirements for coordination, it is
the only approach that scales to web size, i.e. is suitable for large-scale open online col-
laboration. Any group member can directly edit any part of a document giving them the
opportunity to decide for themselves how and what to contribute to the final product. We
therefore consider this strategy to be the only suitable approach for open online collabo-
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rative writing. Depending on the work mode of the collaboration system, group members
either edit in real-time (live editing) or in near real-time (asynchronous, revision-based
editing).

Collaborative writing, or any kind of writing for that matter, is not a single, atomic
activity but rather a complex process made up of different interlocked sub-activities. These
activities have to be properly supported by the collaboration system in order to facilitate
the joint writing process. Lowry et al. (2004) define seven activities of collaborative writing:

Brainstorming: Development of new ideas by all group members.
Convergence on brainstorming: Ranking and filtering of the ideas developed in the
brainstorming phase.

Outlining: Organization of ideas in a high level outline that sketches the rough structure
of the document.

Drafting: Filling the outline with content in order to create a first incomplete draft of the
text.

Reviewing: Adding comments and suggestions for corrections to the draft.
Revising: Responding to the comments from the review phase in order to create an
improved draft.

Copyediting: Making final corrections to the draft in order to create a final, consistent
document.

These activities should not be seen as strictly sequential. They can rather be combined in
an arbitrary order and be revisited in any stage of the writing process. While it is possible
for any group member to participate in every phase of the writing process, it is often the
case that individual contributors specialize in particular tasks, i.e. they take different roles
in the writing process such as author, copy-editor or reviewer. While the role assignment
is strictly pre-assigned in writing strategies such as stratified-division writing (see above),
open forms of collaborative writing will leave it up to the contributors to self-select for
individual roles.

Open Collaborative Writing As we have established before, collaborative writing adds
additional complexity to the writing process compared to individual writing mainly due to
the added coordination efforts necessary to synchronize the work of all co-authors. Open
collaboration in writing adds yet another level of complexity to the process since the co-
ordination strategies have to scale to a large, heterogeneous group with different levels of
expertise and different agendas.

Open collaborative writing is still a relatively rare phenomenon compared to other
efforts of joint work that we already listed above. Many efforts never exceeded the state
of exploratory experiments. Rettberg (2005), for example, lists several activities revolv-
ing around the idea of constructive narratives following the concepts of exploratory and
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constructive hypertext coined by Joyce (1988). Collaborative writing projects such as the
Hypertext Hotel 8, The Unknown9 or 1001 Nights Cast 10 resemble long term writing events
producing a work in progress which is intended to remain in constant evolution rather than
becoming a single finished product.

Some of the main lessons learned in these experiments was that it is important to limit
the extent of openness in open collaboration in order to reach satisfactory results. That is,
in order to synchronize the efforts of all participants, they have to agree upon constraints
that everyone has to abide to and come to explicit agreements regarding their cooperation.
Without coordination and agreement, the collaborative efforts are prone to incoherence
and previous work is likely to be reverted by later contributors.

This holds not only true for literary experiments like the ones listed above, but also
for more down-to-earth projects with real life relevance such as Wikipedia. Even though
the participation in Wikipedia is open and not regulated by predefined, fixed rules, it is
necessary to coordinate the work of many in order to reach a common goal – a high quality
encyclopedia. Wikipedia is introduced in detail in chapter 3, while the issues of quality
management in the context of open collaboration will be discussed in chapter 4.

2.3 Collaborative Online Writing Systems

According to Lowry et al. (2004, p. 92), a collaborative writing system is a piece of “[s]oftware
that allows collaborative writing groups to produce a shared document and assist collabo-
rative writing groups to perform the major collaborative writing tasks.” This subsumes a
wide range of tools ranging from mere version control to full-blown writing environments.

Noël and Robert (2004) carried out an empirical study interviewing 33 individuals in a
web survey about the most important aspects of collaborative writing tools. Among the
highest ranked answers, the participants mentioned synchronous access to the documents,
version control, communication between collaborators, ability to add stand-off comments
to the text, visualization of the version history and spaces to plan and schedule the future
work on the documents. Even though there was a high variation in the answers, the above
mentioned aspects occurred multiple times stressing their importance in different applica-
tion scenarios.

It is beyond the scope of this work to define a hierarchy of collaborative writing systems
and weight the pros and cons of each possible incarnation. Noël and Robert (2003) give a
detailed overview of 19 web-based systems for collaborative writing and discuss the merits
and problems of each solution. While Noël and Robert exclusively focus on asynchronous
collaboration system, many recent tools foster synchronous collaboration, i.e. they allow

8http://netlern.net/hyperdis/hyphotel accessed on Feb 27, 2014
9http://unknownhypertext.com accessed on Feb 27, 2014
10http://1001.net.au accessed on Feb 27, 2014
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users to collaborate in real time on the same document. Examples for such tools are Ether-
Pad 11,Google Docs 12 or Zoho Docs 13, but also traditional word processing software, such as
Microsoft Word 14, expand their scope into the web in order to support real-time collabora-
tion.

Wikis. Even though not originally designed as a writing tool, the wiki has particularly
taken hold as a collaborative writing system. The term wiki stems from the Hawaiian ex-
pression wiki wiki , which translates to “very fast” and illustrates the main focus of the
technology – fast and easy content production and management with minimal overhead
(Leuf and Cunningham, 2001).

Wikis are web-based, asynchronous co-authoring tools whose content is structured
with lightweight markup that is translated into HTML by the wiki system. The markup
is restricted to a small set of keywords, which lowers the entrance barrier for new users
and reduces the barrier to participation. Many wiki systems even offer visual editors that
automatically produce the desired page layout without having to know the markup lan-
guage.

A unique characteristic of wikis is the automatic documentation of the revision history
keeping track of every change that is made to a wiki page which can also be visually rep-
resented. With this information, it is possible to reconstruct the writing process from the
beginning to the end and revert malicious changes in order to restore an earlier, clean ver-
sion of the document. Additionally, manywikis offer their users a communication platform,
the Talk pages , where they can discuss the ongoing writing process with other users.

Thus, wikis satisfy all the above listed requirements for good collaborative writing plat-
forms. In the course of this thesis, we focus onWikipedia , a wiki-based encyclopedia, which
is one of the most successful collaborative online projects on the world wide web.

Chances for NLP assistance. While the openness of wikis, their low entry barrier and the
lightweight markup are the main reasons for their success, they are, at the same time, the
major points of concerns for large-scale projects that aim at high quality content. As wikis
and their user base grow, they tend to become unstructured and unorganized (Buffa, 2006).

Recent research has suggested to use NLP to automatically improve the structure of the
wikis and transform them into self-organizing content management systems while retain-
ing openness and ease of use and without imparting too many restrictions on the users
(Hoffart et al., 2009; Bär et al., 2011). While these efforts are mainly directed towards im-
proving the usability of intranet wikis that are used as knowledgemanagement systems and

11http://etherpad.org
12https://docs.google.com
13https://www.zoho.com/docs
14Microsoft Office 365 is a subscription-based online software that offers, among others, collaborative word
processing and spreadsheet capabilities.
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thus rather resemble the closed group collaboration paradigm, large-scale, open wikis aimed
at collaborative content production, such as Wikipedia, rather demand a quality manage-
ment strategy that informs the users at all times of any quality problems and demand for
improvement while offering an effective communication platform on which the work can
be coordinated. NLP can offer improvements in both of these aspects. Using the exam-
ple of Wikipedia, this thesis will present two approaches to improve information quality
management at large scale in open collaborative environments.

2.4 Chapter Summary

In this chapter, we have discussed the foundations of open collaboration. We identified
the key differences between closed group and open collaboration and discussed the main
challenges involved in the latter, such as motivation, coordination and work allocation. We
further discussed universal properties of open collaboration that can be found across all
collaborative platforms. In particular, the power law of participation suggests an unequal
work distribution across all users while the motivation of each user to contribute to the
collaborative project differs and thus influences the nature of their contribution.

In a second part of the chapter, we turned to collaborative writing and analyzed how it
differs from individual writing. We discussed the main collaborative writing strategies and
identified typical writing activities involved in order to inform any decisions that aim at
improving the work coordination and quality management in a collaborative environment.

We finally addressed open collaborative writing, which adds another level of complexity
to the collaborative writing task. We established that it is necessary to reduce the complex-
ity of the task by explicitly constraining the openness with policies and guidelines upon
which all participants have to agree. This is not done top-down from a central author-
ity, but by coordination of all users. Therefore, effective means for work coordination and
policy making are necessary.

We closed the chapter by reviewing the typical requirements for collaborative writing
systems and identified the wiki as a system that satisfies the most important requirements.
We furthermore suggested that NLP can help to overcome the inherent problems coming
along with the openness of these systems, their low entry barrier and lack of a central,
regulatory authority.
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Chapter 3

Wikipedia

“Wikipedia is the best thing ever. Anyone in the world, can
write anything they want about any subject. So you know
you are getting the best possible information.”

— Michael Scott (played by Steve Carell), The Office

This chapter aims at introducing Wikipedia and defining the basic terminology. We first
give a general overview of the online encyclopedia and its evolution (section 3.1) and intro-
duce its main structure and organization (section 3.2). We proceed with a discussion of the
community around Wikipedia, the understanding of which is vital for any quality-related
analysis (section 3.3). We then examine Wikipedia’s versioning system – the revision his-
tory (section 3.4) – and its communication hub – the discussion pages (section 3.5). We
furthermore discuss technical aspects of automatically processing the large amount of data
Wikipedia has to offer (section 3.6). We conclude the chapter by introducing the most im-
portant sister-projects of Wikipedia (section 3.7) and summarize our findings (section 3.8).

3.1 Overview

As the previous chapter has shown, wikis have proven to be a suitable and well-accepted
technology for large-scale online collaboration. The most prominent example of a success-
ful, large-scale wiki isWikipedia , a free, collaboratively created online encyclopedia which
is available in 287 languages and dialects15. Its main website, wikipedia.org , ranks in the
TOP 10 of the most visited pages on the web according to the Alexa web traffic report16.
While the term Wikipedia usually refers to this website, it also describes the community
behind the encyclopedia that plans, discusses and creates its content.
15According to http://meta.wikimedia.org/wiki/List_of_Wikipedias as of 6 Sept 2013
16Rank 7 according to http://www.alexa.com/siteinfo/wikipedia.org as of 2 Sept 2013

19

http://meta.wikimedia.org/wiki/List_of_Wikipedias
http://www.alexa.com/siteinfo/wikipedia.org


Chapter 3. Wikipedia

Figure 3.1: Main page of the English Wikipedia
http:/en.wikipedia.org on 2 Sept 2013

History. The idea of creating a collaborative online encyclopedia goes back to 1993 when
Rick Gates first proposed his project Interpedia which, however, never left the planning
stage. The idea was picked up again in 2000 by Jimmy Wales who started Nupedia as a
free online encyclopedia. Unlike its successor Wikipedia, Nupedia was not an open collab-
orative platform, but relied solely on expert content and employed a complex seven-layer
review system. This restrictive policy, however, caused Nupedia to attract little attention
both by readers and contributors. In an attempt to attract a wider audience, Wales estab-
lished Wikipedia as a side project and, at the same time, an incubator for Nupedia articles.
Founded on January 15 2001, Wikipedia quickly became popular by word-of-mouth result-
ing in 1,000 articles to be created within the first year. Nupedia could never step out from
under Wikipedia’s shadow and was closed in 2003 with only 24 completed articles (Ayers
et al., 2008; Reagle, 2010).

United in diversity. Even though Wikipedia is often referred to as a multilingual ency-
clopedia , it is more precisely described as an encyclopedia that comes in many interlinked
language versions. While the former definition implies a uniformity in the organizational
and administrative structures across all languages, the latter definition better captures the
individual nature and culture of each language community. Each language version ofWiki-
pedia has its unique governance policies, quality standards and perception of what may and
may not be included in the encyclopedia. These regulations have naturally grown over the
years in a collaborative attempt to find a common ground within the language commu-
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Figure 3.2: The origin of policies in Wikipedia using the example of the English Wikipedia

nity that best serves the needs of both the creators and consumers. Despite all differences,
there is a set of six founding principles 17 which are shared by all Wikimedia projects (see
section 3.7 for an overview) and, by extension, all language editions of Wikipedia: These
generic principles have been adapted to reflect the peculiarities of an encyclopedia resulting
in the so-called five pillars of Wikipedia18

1. Wikipedia is an encyclopedia.
2. Wikipedia is written from a neutral point of view.
3. Wikipedia is free content that anyone can edit, use, modify, and distribute.
4. Editors should treat each other with respect and civility.
5. Wikipedia does not have firm rules.

This specific interpretation of the six founding principles is shared by most language edi-
tions of Wikipedia with only minor deviations. In particular, the fifth pillar has often been
subject of debate and is not accepted by some language versions, such as the GermanWiki-
pedia19. In addition to defining the main characteristics of Wikipedia, most language ver-
sions also provide a set of demarcation criteria which define the limits of Wikipedia20. To-
gether, they form theWikipedia Foundations and represent the basis for all further policies
and practical guidelines (see figure 3.2)

– Wikipedia is not a paper encyclopedia.
– Wikipedia is not a dictionary.
– Wikipedia is not a publisher of original thought.
– Wikipedia is not a soapbox or means of promotion.
– Wikipedia is not a mirror or a repository of links, images, or media files.
– Wikipedia is not a blog, Web hosting service, or social networking service.
– Wikipedia is not a directory.
– Wikipedia is not a manual, guidebook, textbook, or scientific journal.

17http://meta.wikimedia.org/wiki/Founding_principles/de
18http://en.wikipedia.org/wiki/WP:5
19http://de.wikipedia.org/w/index.php?oldid=122405554 accessed on 10 Sept 2013
20http://en.wikipedia.org/wiki/WP:NOT
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– Wikipedia is not a crystal ball.
– Wikipedia is not a newspaper.
– Wikipedia is not an indiscriminate collection of information.
– Wikipedia is not censored.

Within the confines of the Wikipedia Foundations, all language communities establish
their own cultures and regulations. This inevitably results in the development of different
philosophies regarding key aspects such as article organization21, notability standards22,
article development23 and various other issues24. Even though these phenomena can also
be observed within any larger Wikipedia, they are most evident when comparing different
language versions.

Despite the pursuit of a neutral point of view as one of the founding principles, the
different cultural backgrounds of the individual language communities inevitably introduce
point of view differences across the Wikipedias. A seemingly neutral and objective article
may exhibit a notable cultural bias that describes the subject matter in a more positive or
negative light than the same article in a different language version ofWikipedia (Massa and
Scrinzi, 2011; Al Khatib et al., 2012). This so-called systemic bias 25 is particularly evident
in larger Wikipedias with users from different cultural backgrounds, such as the English
Wikipedia, because the cultural diversity of the community is a prerequisite for becom-
ing aware of this problem. Less culturally diverse Wikipedias might suffer from the same
problemwhich, however, may remain undetected by the community (also see section 3.3.3).

3.2 Structure and Organization

As a compromise between the low publication threshold of the wiki concept and the struc-
tural requirements of a large-scale encyclopedia, Wikipedia takes the middle ground be-
tween an unstructured and a semi-structured resource by exhibiting traits of both worlds.
While the content in Wikipedia is strongly interconnected with different types of links and
redirects, contains structured elements, such as infoboxes, and makes use of a sophisticated
category system providing a high degree of ontologizaton, Wikipedia still relies on a low
entrance barrier which makes it possible for new users to contribute without any particular
training (Hovy et al., 2013).

In the remainder of this sectionwewill first discuss themacrostructure ofWikipedia, i.e.
the inter-page organization, and then proceed with the microstructure, i.e. the intra-page
organization.

21Lumpers vs. Splitters: http://en.wikipedia.org/wiki/Lumpers_and_splitters
22Deletionists vs. Inclusionists: http://en.wikipedia.org/wiki/Deletionism_and_inclusionism
23Eventualists vs. Immediatists: Rettberg (2005)
24http://meta.wikimedia.org/wiki/Conflicting_Wikipedia_philosophies
25http://en.wikipedia.org/wiki/Wikipedia:Systemic_bias
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Namespace English French German Spanish Russian

Main A 10,454,480 (58%) 2,708,931 (47%) 2,719,812 (41%) 2,491,636 (59%) 2,110,411 (50%)
T 5,213,744 (11%) 1,242,508 (10%) 573,230 232,007 (1%) 412,143

User A 1,740,863 (7%) 201,732 (4%) 364,470 (4%) 140,336 (4%) 91,181 (4%)
T 9,057,248 1,216,634 379,595 (1%) 1,125,806 295,688

Wikipedia A 793,364 (13%) 36,257 (23%) 40,303 (11%) 24,759 (9%) 33,801 (9%)
T 210,651 (25%) 5,517 (26%) 11,187 (14%) 2,009 (13%) 2,006 (4%)

File A 843,156 41,654 172,730 0a 155,219
T 175,705 1,582 2,173 0a 958

MediaWiki A 1,895 (1%) 1,027 1,786 1,508 988
T 1,081 (11%) 139 (14%) 230 (12%) 94 (2%) 144 (3%)

Template A 524,227 (19%) 162,243 (7%) 54,526 (2%) 19,573 (19%) 100,493 (14%)
T 204,315 (12%) 6,230 (7%) 3,865 (5%) 1,132 (2%) 5,581 (2%)

Help A 1,327 (52%) 931 (45%) 854 (71%) 240 (45%) 25 (72%)
T 629 (24%) 391 (26%) 375 (22%) 77 (9%) 5

Category A 1,053,314 (2%) 246,800 185,706 215,871 246,182
T 676,963 14,962 6,621 3,008 4,553

Portal A 120,635 (8%) 49,445 (10%) 16,518 (7%) 12,465 (9%) 19,219 (3%)
T 30,069 (5%) 3,339 (41%) 4,566 (16%) 511 (6%) 722 (1%)

Other A 5,007 (10%) 121 (2%) 69 51 198
T 4,705 (8%) 27 (4%) 26 (92%) 16 (6%) 6

Total 31,113,117 (23%) 5,940,443 (24%) 4,538,616 (25%) 4,271,083 (35%) 3,479,517 (31%)
a No pages in this namespace. This Wikipedia exclusively embeds media information from Wikimedia
commons.

Table 3.1: Number of pages per namespace for the five largest Wikipedias as of 4 Sept 2013. The
percentage of redirects is provided in parentheses, if applicable. A denotes article namespaces,
T the corresponding talk namespaces.

3.2.1 Namespaces and Naming Conventions

While the best known artifacts in Wikipedia are the articles, which contain the encyclo-
pedic content, a substantial fraction of all pages serve administrative and communicative
purposes. Wikipedia is organized in so-called namespaces, a system of thematic layers
which group pages according to their main purpose. In addition to the main encyclopedic
layer, there are, for example, namespaces that hold administrative pages, help pages, user
pages and descriptions of media assets. Each of these namespaces has an associated Talk
namespace, which holds discussion pages related to the corresponding content pages (see
section 3.5). Overall, eight default subject namespaces are predefined by the MediaWiki
software26:

Main: Contains encyclopedic articles, lists, disambiguation pages and redirects.
User: Contains user pages and sub-pages created by individual users. This namespace is
often used as an incubator for new content in the main namespace.

26http://www.mediawiki.org/wiki/Manual:Namespace
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Project: The project namespace contains pages about the wiki-project itself. In the case of
Wikipedia, this project namespace is also namedWikipedia. It contains policy pages, best
practices, workflows and essays about the work in Wikipedia.

File: Contains pages with descriptions of media items including links to these media items.
The actual media items are hosted on the Wikimedia Commons platform27. Pages in this
namespace are only used to override the original media descriptions on Wikimedia
commons.

MediaWiki: Contains internal content provided by the MediaWiki installation, such as
standard system messages.

Template: Contains template pages that can be inserted into other pages (see section 3.2.4)
Help: Contains help pages for passive and active users of Wikipedia.
Category: Contains pages for every category which list the members of this category
along with an optional category description.

In addition to these default namespaces, Wikipedia defines custom namespaces that hold
pages for Wikipedia-specific features such as thematic portals or Wikipedia book projects.
These namespacesmight vary across the different language versions. Table 3.1 shows statis-
tics of page numbers per namespace for the five largest Wikipedias.

Like the entries of most traditional encyclopedias, Wikipedia articles correspond to sin-
gle concepts. The article naming conventions28 hereby ensure that the titles are recogniz-
able, natural, precise, concise and consistent with titles of similar articles. Since natural
language tends to be ambiguous, it is necessary to handle polysemous page titles, i.e. titles
that may refer to multiple concepts. In Wikipedia, this is achieved by means of natural
disambiguation, comma-separated disambiguation or, in most cases, parenthetical disam-
biguation.

Natural Disambiguation: An alternative, non-ambiguous title is used that also meets the
naming conventions. This is the preferred disambiguation form.
Example: Instead of English, use English language or English people

Comma-separated Disambiguation: The disambiguation term is added as a
comma-separated suffix to the title, if it stands in a hierarchical relationship to the main
concept. It is most commonly used with geographic names.
Example: Lincoln, Nebraska ; Lincoln, England ; Lincoln, New Hampshire

Parenthetical Disambiguation: The disambiguation term is added as a parenthetical
suffix to the title. This is the most common disambiguation form.
Example: Apple (fruit) ; Apple (computer) ; Apple (album)

In order to establish a link between disambiguated terms and their polysemous lemma, the
latter is used as the title of a disambiguation page. A disambiguation page lists all senses of a
27https://commons.wikimedia.org
28http://en.wikipedia.org/wiki/WP:NAMINGCRITERIA
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polysemous term which are represented in Wikipedia and links to their respective articles.
These pages are internally flagged as disambiguation pages, since they do not count as
content pages.

Another type of pages without content are redirects. Redirect pages are used to repre-
sent multiple variants of page titles that refer to the same concept. This way synonymous
terms, writing variants (e.g. British English vs. American English) and different words
forms (e.g. verb inflections) can be mapped to a single page. If a concept in Wikipedia can
be described by several terms that equally qualify as page titles, the most salient term is
chosen as the title of the content page for this concept, while the other possible terms are
used as titles for redirect pages. Redirect pages simply forward to the corresponding con-
tent page and are marked as such in the database. Table 3.1 lists the percentage of redirects
in each namespace in parentheses.

3.2.2 Organizational Structures

In order to facilitate the navigation through the encyclopedia beyond the full text search,
Wikipedia provides several organizational structures such as categories, lists and portals.
As we will show later, the proper use of these structures has a great impact on the overall
quality of the encyclopedia, since not only the quality of the content is important, but also
its organization.

Category System. The Wikipedia category system is the most comprehensive organiza-
tional structure inWikipedia, comprising over amillion categories in the EnglishWikipedia
as of 4 September 2013 with four different category types:

Administrative categories: Indicate the maintenance status of articles
Example: “Articles needing cleanup”

Container categories: Group other categories, but do not directly apply to articles
Example: “People categories by parameter”

Set categories: Represent lists of articles
Example: “Cities in Germany”

Topic categories: Group articles related to a particular topic
Example: “History of Germany”

Even though the category system is organized hierarchically, it is rather a thematic clas-
sification used for tagging wiki pages than a well-defined taxonomy for document catego-
rization (Nagata et al., 2010; Syed and Finin, 2010). The hierarchical relationships between
the categories form a large graph structure, theWikipedia Category Graph (WCG), which
was found to be a scale-free, small-world graph similar to lexico-semantic networks such
as WordNet (Zesch and Gurevych, 2007).
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Lists. Besides the extensive category system, Wikipedia offers other means of organizing
articles. Lists are pages that link thematically related articles. In contrast to the set category ,
which also serves the purpose of grouping related articles, lists can also include links to
non-existing articles (so-called redlinks ) as reminders that these articles still have to be
written. Lists are created manually and are subject to similar quality standards as articles.29

Like categories, lists are organized hierarchically on up to three levels (see Lists of lists of
lists 30). Since these pages are maintained by hand, they are prone to inconsistency and
incompleteness.

In addition to generic lists, Wikipedia offers several other devices for content organi-
zation which resemble lists to a large extent. These include glossaries for listing term defi-
nitions, outlines and overviews for hierarchically organizing links to the main articles on
particular topics, and indexes , which provide alphabetical, automatically created overviews
of all articles in particular subject areas.

Portals. In contrast to categories and lists, portals do not merely provide links to articles,
they rather serve as an entry point to the main topics inWikipedia. They provide the reader
with excerpts of well selected articles from each subject area and even include links to
related external resources or news items related to the subject. Portals are often associated
with and maintained by aWikiProject (see section 3.3), which manages and coordinates the
article development in a specific subject area. The Wikipedia main page (see figure 3.1)
can be regarded as a special portal for the purpose of bringing distinguished or particularly
noteworthy content to the attention of the reader.

3.2.3 Inner Article Structure

While no particular article layout is enforced by the wiki software, theWikipedia guidelines
demand a basic common article structure (Ayers et al., 2008). Figure 3.3 shows an overview
of an example article and its building blocks. The body of the article is usually segmented
into titled sections. The titles of these sections are used by the wiki software to automati-
cally create a table of contents for the article. The introductory or lead paragraphs sum up
the content of the article in a short, self-contained text and give an overview of the scope
of the article. The optional infobox on the top of the page is a fixed-format table which
summarizes basic facts about the article subject or provides links to related articles. These
infoboxes are one of the few sources of structured information in Wikipedia. Throughout
the article text, links to other wiki pages, so-called wikilinks , are provided in order to in-
terconnect related pages and to provide definitions for concepts that are not explained in

29The criteria for distinguished lists can be found under http://en.wikipedia.org/wiki/WP:FLCR. Similar crite-
ria exist for articles, as will be discussed in detail in chapter 4.

30http://en.wikipedia.org/wiki/List_of_lists_of_lists

26

http://en.wikipedia.org/wiki/WP:FLCR
http://en.wikipedia.org/wiki/List_of_lists_of_lists


3.2. Structure and Organization

(a) Article head (b) Article bottom

Figure 3.3: Structure of an article: a) article title with parenthetical disambiguation, b) hatnote,
c) warning messages, d) introductory/lead paragraph, e) table of contents, f) first section with
section title, g) infobox, h) links to other articles, i) bibliography, k) links to external resources,
m) category memberships
Source of example: http://en.wikipedia.org/wiki/index.php?oldid=584601250

the article itself. Links colored in red (redlinks ) point to articles that do not yet exist and
serve as a reminder to create these articles. On the top of the page, so-called hatnotes dis-
play important information such as disambiguation terms or redirects. Optional warning
messages on the top of the page furthermore inform the reader of existing problems with
the article or ongoing debates. They are produced by templates, which are discussed in the
following section. The bottom of each page displays footnotes and references and provides
the bibliography for the article. Furthermore, it contains links to external resources, since
these are not allowed to be placed directly in the article text. Every article closes with a list
of all categories of which the article is a member.

Outside of the main article frame, in the left navigation bar, interwiki links are listed,
which link to corresponding articles in other language versions of Wikipedia. As of now,
these links have to bemaintained separately in each article of every language version. How-
ever, theWikidata project currently attempts to develop a centralized system for maintain-
ing these interwiki connections (see section 3.7).

Articles are written and formatted in wiki markup , a lightweight markup language that
is designed to hide the complexity of richer markup languages, such as (X)HTML, from the
user. This way, using wiki markup is intended to be as simple as using natural language.
However, with the rising demand for complex article layouts and integrated functions for
automation purposes, the simplicity of the wiki markup language could no longer be main-
tained. While the core of the markup language is the same as in the early days, countless
additions to the instruction set have made it difficult to use for new users and even impos-

27

http://en.wikipedia.org/wiki/index.php?oldid=584601250


Chapter 3. Wikipedia

sible to parse reliably for computers.31 The latter issue, the irregularity and ambiguities of
the wiki markup language, is the reason why no WYSIWYG editor has been developed to
date that is fit to serve the purposes of theWikipedia community. In an ongoing large-scale
project, the Wikimedia Foundation develops the Visual Editor 32, which is supposed to be
able to reliably parse and generate wiki markup and thus enable WYSIWYG editing of Wiki
pages. This is believed to further lower the entry boundary for newWikipedia contributors
and to lower the time necessary to edit an article.

3.2.4 Template System

In principle, templates are small wiki pages that can be embedded in another page in order
to centralize repetitive content. A common use case for templates is to embed info banners,
system messages, warnings or navigational boxes into articles or other wiki pages.

Depending on the particular template, the embedded content is either transcluded (i.e.,
inserted into the page on runtime but not in the source code) or substituted (i.e., inserted
directly in the source code). The content of templates is usually not static, but it can be
controlled with a set of parameters passed to the template in the wiki markup. For example,
the structure of an infobox can be centrally defined in a template while the actual content is
defined in the embedding articles. This way, the information provided by a certain type of
infobox is uniform across all articles using it. TheWikidata project (see section 3.7) further
attempts to centralize the data for infoboxes across different language versions of the same
articles in order to improve the overall consistency of the encyclopedia.

While parameters are often used to inject messages or data into the template, like in
the case of infoboxes, the range of possibilities is much wider. Via the MediaWiki exten-
sion Scribunto , it is possible to include scripts written in the Lua33 programming language
directly in the source code of the template pages. These scripts can be controlled with the
parameters that are passed to the templates and produce the content that is finally displayed
on the embedding page.

Besides including recurring content or embedding output of Lua-scripts, templates are
frequently used as a tagging system. A prominent example for this usage are cleanup tem-
plates , which aim at identifying articles with particular deficiencies. Whenever a cleanup
template is embedded on a wiki page, it both displays a message on the page and adds the
page to the corresponding cleanup category. This way, it is easy to keep track of the prob-
lems marked by the templates via the category system while the problems are at the same
time communicated to the readers via the embedded message. In chapter 5, we use these
cleanup templates as human assigned labels to create corpora of quality flaws inWikipedia.

31http://www.mediawiki.org/wiki/Markup_spec
32http://en.wikipedia.org/wiki/WP:VE
33http://www.lua.org

28

http://www.mediawiki.org/wiki/Markup_spec
http://en.wikipedia.org/wiki/WP:VE
http://www.lua.org


3.3. Community

3.3 Community

Even though we mainly regard Wikipedia as a collaboratively created resource, it is not
only an encyclopedia but also a community. In order to understand how the resource is
constructed and how it evolves, one has to obtain a basic understanding of the community
behind the encyclopedia.

3.3.1 User Groups and Roles

While the five pillars of Wikipedia state than anyone can edit the encyclopedia, different
user groups define who is or is not allowed to perform particular actions in Wikipedia and
furthermore manage the responsibilities and competences within the self-administration of
the community. The following list describes the major user status groups in Wikipedia34:

Unregistered User: Any user who is not registered or not logged in is identified with their
IP address. Depending on the protection status of certain pages, unregistered users might
not be able to perform simple edits.

Registered User: Any logged-in user who is registered with a valid email address. Most
non-privileged actions are available for this status group.

Reviewer: Trusted user who is allowed to review edits of other users made to articles under
the pending changes protection or with flagged revisions. (see section 3.4)

Administrator: Users with increased edit privileges who can delete and restore pages,
block users, protect pages, manage some user groups and perform other maintenance
functions. The administrator role is local to a certain Wikipedia language version.

Bureaucrat: Users with privileges necessary for user right management such as user group
assignment or change of user names.

Ombudsman: A small group of users with increased access rights who investigate
violations of privacy policies across Wikimedia projects.

Steward: A small group of users with complete access to all Wikimedia wikis, including
the ability to change user rights and groups.

Developer: Users with the highest degree of technical access, since they are able to directly
make changes to the MediaWiki software and the underlying data.

Even though anonymity is an important aspect for many members of the Wikipedia com-
munity, accountability still has to be ensured. Therefore, editing anonymously as an unreg-
istered user is frowned upon while registered users usually use pseudonyms which protect

34A full list of additional user groups along with a detailed description of the respective access rights
can be found under http://en.wikipedia.org/wiki/http://en.wikipedia.org/wiki/Wikipedia:User_access_

levels for the EnglishWikipedia and under https://meta.wikimedia.org/wiki/User_groups for generalWiki-
media projects.
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their privacy but still ensure accountability of their actions (Ayers et al., 2008). Further-
more, it is expected that every registered individual only participates with a single account.
Multiple accounts owned by a single user are called sock puppets , which might be used to
create the illusion of greater support or rejection of a particular issue and hence influence
the collaborative decision making process towards the goals of the user. Automatically
detecting sock puppets can be regarded as an instance of authorship attribution and can
contribute to the quality management process (Solorio et al., 2013).

3.3.2 Soft Security

Even though the available user groups provide some security by limiting general access
to non-registered users with technical means, the open collaboration principle still allows
most changes to be made by any registered user. Rather than imposing rigid restrictions on
users willing to contribute to the project, Wikipedia follows the approach of soft security .
By assuming good faith in every (anonymous) participant and relying on the many eyes
principle, it is assumed that high quality output can be reached and any damages made to
the resource in the course of the collaborative process can be kept within tolerable limits.
Furthermore, with a transparent and open administrative system, everyone can be included
in the decisions that govern the collaborative process (Ayers et al., 2008; Reagle, 2010). Even
though this approach has been very successful for Wikipedia so far, some Wikipedias have
now reached a size where peer review and the many eyes principle alone can no longer
assure the integrity and quality of the whole resource without any technological assistance,
which remains to be shown in the course of this thesis.

3.3.3 Systemic Bias

Since Wikipedia articles are the collaborative product of the Wikipedia community, they
naturally represent the views and values of this community. The principle of open partic-
ipation and the international availability of Wikipedia suggests that the community is a
balanced representation of the world’s population. However, studies have shown that this
is not the case (Lam et al., 2011; Glott et al., 2010; Hill and Shaw, 2013). The majority of
Wikipedia authors and active community members are white males from western coun-
tries resulting in a gender gap and a western-centric world view. This systemic bias is in
conflict withWikipedia’s policy of the neutral point of view, but is one of the hardest issues
to resolve.
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3.3.4 WikiProjects

WikiProjects 35 are communities of interest aimed at providing a forum for contributors who
work together on a particular subject area or provide a particular service for the community
such as article maintenance. As of October 2013, there exist over 2,200 WikiProjects in the
English Wikipedia36, which are centrally registered in the WikiProject Directory37.

While each WikiProject has to obey the general Wikipedia guidelines, larger groups
establish their own policies, quality management workflows and quality standards. Since
WikiProjects and their members are considered to be most knowledgeable about their par-
ticular subject area, they are responsible to provide quality feedback for the articles in their
field and decide about inclusion and exclusion of particular topics. Even though the quality
standards might differ across WikiProjects, they all make use of the same labels indicating
the same quality levels. This way, it is possible to aggregate the quality information cen-
trally to gain a general overview of the quality of Wikipedia at a given point in time (see
chapter 4.3).

3.4 Revision History

A key characteristic of Wikipedia is its revision history which keeps track of all changes
that have ever been made to any wiki page. Every time a page is edited by a Wikipedia
user, a new version of this page is created. We call each individual version of a Wikipedia
page a revision , denoted as rv . v is a number between 0 and n, where r0 is the first and rn
the newest version of the page. In addition to the full text of the page with markup, the
Wiki system stores for each revision additional metadata, such as the user who changed
the page and thus created the new revision, the creation time of the revision, an optional
commit comment and a flag whether minor or major changes have been made to the page
(also see section 3.6 for a detailed overview of all information stored in the database). One
of the main goals of this versioning system is to provide the possibility to revert the changes
made to a page in one or more revisions and thus return to an earlier content state of the
page. Each revert will again result in a new revision of the reverted page.

Since every single revision is self-contained and the text of the page is stored in full
for each revision, the content of the revision history is highly redundant. This drastically
increases the amount of space necessary to store the data and results in large data dumps
(see section 3.6). In addition to revisions, we define diffs to be the set of all changes be-
tween two revisions while each individual, atomic change is called an edit . A single diff
can therefore comprise one or multiple edits. The MediaWiki allows to display diffs in

35http://en.wikipedia.org/wiki/WP:PROJ
36http://en.wikipedia.org/wiki/index.php?oldid=576344994
37http://en.wikipedia.org/wiki/WP:PROJDIR
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(a) Excerpt of a revision history

(b) Diff between two revisions displayed on a DiffPage in the MediaWiki soft-
ware

Figure 3.4: Revisions of the article “Natural Language Processing” in the EnglishWikipedia accessed
on 05.Jan 2014

DiffPages , highlighting all changes identified in a line-by-line comparison of two revisions.
Figure 3.4 shows an excerpt of the revision history as it is presented in the MediaWiki
software along with a DiffPage comparing two adjacent revisions of an article.

Privileged users can limit page changes to users of particular status groups, for instance,
editing can be restricted to registered users or users with particular privileges, such as ad-
ministrators. These restrictions can either prevent particular types of edits, such as renam-
ing a page, or can apply to any kinds of changes. A detailed description of the available
protection levels can be found in theWikipedia Protection Policies 38.

In rare cases, for instance if confidential information has been provided on a page that
might violate the privacy of an individual, particular revisions or the revision history of
whole pages can be deleted by privileged users in order to prevent any access by the public.

38http://en.wikipedia.org/wiki/WP:PP
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There have been efforts to introduce quality control mechanisms on the revision level
in form of so-called flagged revisions 39, which allow experienced users to moderate the edit
activities of new users. This editorial reviewwas intended tominimize the risk of vandalism
and improve the accuracy and overall quality of the articles by having experienced Wiki-
pedia authors approve revisions before they go public. While this approach was accepted
by the community of the German Wikipedia very early and is being used successfully as
part of the information quality management process, other Wikipedia communities display
mixed sentiment regarding the system. The English Wikipedia now uses a modified ver-
sion of the flagged revisions called pending changes 40, which currently only requires edits
of unregistered and newly registered users to be reviewed.

While the benefit of maintaining a revision history is obvious for the users ofWikipedia,
it also serves as an invaluable resource for natural language processing applications. We
provide a detailed list of related work based on the Wikipedia revision history in Ferschke
et al. (2013).

3.5 User Discussions

As we have discussed in chapter 2, authors of collaboratively written texts have to exter-
nalize processes that remain hidden in individual writing, such as the planning and organi-
zation of the text. Work coordination is particularly important in open collaboration, since
explicit workflows which regulate the writing process do not exist and individual users
might have different goals regarding the further development of an article.

In Wikipedia, the main platform for work coordination and user communication are
the Talk pages. Technically speaking, a Talk page is a normal wiki page located in one of
the Talk namespaces (see table 3.1 and table 3.2). Similar to a web forum, Talk pages are
divided into discussions (or topics) and contributions (or turns). What distinguishes wiki
discussions from a regular web forum, however, is the lack of a fixed, rigid thread structure.
There are no dedicated formatting devices for structuring the Talk pages besides the regular
wiki markup. The basic structure of an article Talk page can be seen in the example shown
in figure 3.5).

Each Talk page is implicitly connected to a content page by its page name—e.g. the
Talk page Talk:Germany corresponds to the article Germany. It is, however, not possible to
establish explicit connections between individual discussions on the page and the section of
the article that is being discussed. Each namespace in Wikipedia has a corresponding Talk

39http://en.wikipedia.org/wiki/WP:FLR
40http://en.wikipedia.org/wiki/WP:PC
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Figure 3.5: Structure of a Talk page: a) Talk page title, b) untitled discussion topic, c) titled discus-
sion topic, d) topic title, e) unsigned turns, f) signed turns
Source of example: http://simple.wikipedia.org/w/index.php?oldid=4633184
Visualization first appeared in Ferschke et al. (2012a)

namespace resulting in a total of ten41 major types of Talk pages in the English Wikipedia
(table 3.2) which can be categorized into four functional classes:

Article Talk pages are mainly used for the coordination and planning of articles.
User Talk pages are used as the main communication channel and social networking
platform for the Wikipedians.

Meta Talk pages serve as a platform for policy making and technical support.
Item-specific Talk pages are dedicated to the discussion of individual media items (e.g.
pictures) or structural devices (e.g. categories and templates).

The users are asked to structure their contributions using paragraphs and indentation. One
turn may consist of one or more paragraphs, but no paragraph may span over several turns.
Turns that reply to another contribution are supposed to be indented to simulate a thread
structure. We call this soft threading as opposed to explicit threading in web forums.

Users are furthermore encouraged to append signatures to their contributions to indi-
cate the end of a turn (see figure 3.6). There are extensive policies42 that govern the usage
and format of signatures. They usually should contain the username of the author and the

41While there are additional special purpose namespaces which have been subsumed under Other in ta-
ble 3.2.1, we only list the Book namespace here, since it is the only one with significant discussion activity.
Other minor namespaces in the English Wikipedia include Education Program , TimedText and Module .

42http://en.wikipedia.org/wiki/WP:SIGNATURE
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Content namespaces Talk namespaces Functional class

Main Talk Article
User User talk User
Wikipedia Wikipedia talk Meta
MediaWiki MediaWiki talk Meta
Help Help talk Meta
File File talk Item
Template Template talk Item
Category Category talk Item
Portal Portal talk Item
Book Book talk Item

Table 3.2: Wikipedia namespaces
and functional Talk page classes

time and date of the contribution. However, users’ signatures do not adhere to a uniform
format, which makes reliable parsing of user signatures a complex task. Moreover, less
than 70% of all users explicitly sign their posts (Viégas et al., 2007). In some cases, depend-
ing on the setup of an individual Talk page, automatic scripts—so-called “bots”—take over
whenever an unsigned comment is posted to a Talk page and add the missing signature (see
figure 3.6, signature 3.5). While this is helpful for signature-based discourse segmentation,
which relies on the presence of a user signature to identify turn boundaries, it is misleading
when it comes to author identification where the actual content of the signature is impor-
tant .

Due to the lack of discussion-specific markup, contribution boundaries are not always
clear-cut. They may even change over time, for instance if users insert their own comments
into existing contributions of other users, which results in non-linear discussions. This
makes automatic segmentation of Talk pages a challenging task and demands a substantial
amount of preprocessing. We will again refer to this phenomenon under the term in-text
replies when discussing our own approach for dialog segmentation in chapter 6.4.1.

There are ongoing attempts to improve the usability of the discussion spaces with ex-
tensions for explicit threading43 and visual editing44. However, these enhancements have
been tested only in selected, small Wikimedia projects and have not yet been deployed to
the larger wikis.

In order to prevent individual Talk pages from becoming too long and disorganized,
individual discussions can be moved to a discussion archive45. A general policy states that
Talk pages with more than ten discussion topics or a size of more than 75 Kilobytes should
be archived. However, the requirements differ depending on the discussion activity of a
given Talk page. Discussion archives are marked with an “Archive” suffix and usually num-

43http://www.mediawiki.org/wiki/Extension:LiquidThreads
44http://en.wikipedia.org/wiki/WP:VE
45http://en.wikipedia.org/wiki/WP:ARCHIVE
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The Rambling Man (talk) 18:20, 27 February 2012 (UTC) (3.1)

–66.53.136.85 21:41, 2004 Aug 3 (UTC) (3.2)

– Taku (3.3)

– Preceding unsigned comment added by 121.54.2.122 (talk) 05:33, 10 February 2012 (UTC) (3.4)

–SineBot (talk) 08:43, 31 August 2009 (UTC) (3.5)

Imzadi 1979 > 09:20, 20 May 2011 (UTC) (3.6)

– 14:14, 17 December 2010 (UTC) (3.7)

Figure 3.6: Examples for user signatures on Talk pages: (3.1) Standard signature with username,
link to user Talk page and timestamp (3.2) Signature of an anonymous user (3.3) Simple signature
without timestamp (3.4,3.5) Bot-generated signatures (3.6,3.7) Signatures using colors and special
Unicode characters as design elements

bered consecutively. The oldest discussion archive page for the article “Germany”, for ex-
ample, is named Talk:Germany/Archive_1. There are two possible procedures for archiving
a Talk page: the cut-and-paste procedure and the move procedure . While it is not possible
to determine directly which method has been used to create an archive, the choice has im-
portant implications for processing these pages. The cut-and-paste procedure copies the
text from an existing Talk page to a newly created archive page. All revisions of this Talk
page remain in the revision history of the original page. The move procedure renames (i.e.,
moves) an existing Talk page and adds the numbered archive suffix to its page title. After-
wards, a new Talk page is created that is then used as the new active Talk space. Archives
created with the latter procedure maintain their own revision history, which simplifies the
revision-based processing of these pages.

Furthermore, in addition to automatic archiving, topic specific sub-pages might be cre-
ated for particularly focused discussion, e.g. the discussion of a request for deletion (RFD)
or the review process involved when an article is nominated for promotion to featured or
good article status (see chapter 4.3).

Although there is no discussion-specific markup to structure Talk pages, templates (see
section 3.2.4) can be used to better organize the discussions. A specific subset of templates
is used as a tagset for labeling articles and Talk pages. For example, by adding the template
{{controversial}} to a Talk page, an information banner is placed in the lead section of the
Talk page and the associated article is tagged as controversial. A complete overview of Talk
space specific templates can be found on the corresponding Wikipedia policy pages46. The

46http://en.wikipedia.org/wiki/WP:TTALK
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cleanup and flaw markers are especially helpful criteria for filtering articles and Talk pages
for corpus creation or further analysis.

In chapter 6, we focus on article Talk pages and discuss how they are employed for
work coordination and how we can exploit them as a resource for computational linguis-
tics. While the different kinds of Talk pages are the main communication platform on
Wikipedia, some aspects are discussed outside of the confines of the MediaWiki software
and communicated via mailing lists47, Internet Relay Chat (IRC) channels48 or real-life meet-
ings49.

3.6 Processing Wikipedia

Wikipedia runs on the MediaWiki wiki software50, which offers multiple possibilities for
accessing its contents. Depending on the requirements of the application at hand, be it
structured access to particular pieces of information or large-scale processing of the whole
data contained inWikipedia, several options are available, which we discuss in this section.
First, we describe the different available sources for Wikipedia data, then we discuss APIs,
software libraries and services which can be used to access these data sources. A more
detailed description of the software developed in the course of this thesis can be found in
appendix A.

3.6.1 Data Sources

The MediaWiki software stores all content and meta information in an SQL database with
over fifty tables51. Except for sensitive user information and some other privileged artifacts,
this database can be fully accessed in various ways, as the next subsection will show. For
many purposes, however, offline images of the data are needed, which represent a fixed
snapshot of the whole resource and which can be processed locally.

In order to provide the highest degree of interoperability, XML dumps of the MySQL
databases are provided for download52. Partial dumps can furthermore be created manually
via the export function of the MediaWiki software53. The information included in these
dumps is described in the document type definition of the XML format, which is listed

47https://lists.wikimedia.org
48http://en.wikipedia.org/wiki/WP:CHAT
49Regular face to face meetings in smaller interest groups (http://en.wikipedia.org/wiki/WP:MEET) are as well
organized as larger, non-academic conventions for users of Wikimedia projects, such asWikiMania
(http://wikimania2014.wikimedia.org) orWikiCon (http://de.wikipedia.org/wiki/WP:CON).

50http://www.mediawiki.org
51http://www.mediawiki.org/wiki/Manual:Database_layout
52http://dumps.wikimedia.org
53http://en.wikipedia.org/wiki/Special:Export
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1 < ! ELEMENT mediawik i ( s i t e i n f o , page * ) >
2 < ! ATTLIST mediawik i
3 v e r s i o n CDATA #REQUIRED
4 xmlns CDATA #FIXED ” ht tp : / /www. mediawik i . org / xml / expor t − 0 . 3 / ”
5 xmlns : x s i CDATA #FIXED ” ht tp : / /www. w3 . org / 2 0 0 1 / XMLSchema− i n s t a n c e ”
6 x s i : schemaLocat ion CDATA #FIXED ” ht tp : / /www. mediawik i . org / xml / expor t − 0 . 3 . xsd ”
7 xml : l ang CDATA #IMPLIED
8 >
9 < ! ELEMENT s i t e i n f o ( s i tename , base , gene ra to r , case , namespaces ) >

10 < ! ELEMENT s i tename ( #PCDATA) > < ! −− name o f the w ik i −−>
11 < ! ELEMENT base ( #PCDATA) > < ! −− u r l o f the main page −−>
12 < ! ELEMENT gene r a t o r ( #PCDATA) > < ! −− MediaWiki v e r s i o n −−>
13 < ! ELEMENT case ( #PCDATA) > < ! −− how ca s e s i n page names a re handled −−>
14 < ! ELEMENT namespaces ( namespace + ) > < ! −− l i s t o f namespaces and p r e f i x e s −−>
15 < ! ELEMENT namespace ( #PCDATA) > < ! −− c on t a i n s namespace p r e f i x −−>
16 < ! ATTLIST namespace key CDATA #REQUIRED> < ! −− i n t e r n a l namespace number −−>
17 < ! ELEMENT page ( t i t l e , i d ? , r e s t r i c t i o n s ? , ( r e v i s i o n | up load ) * ) >
18 < ! ELEMENT t i t l e ( #PCDATA) > < ! −− t i t l e with namespace p r e f i x −−>
19 < ! ELEMENT id ( #PCDATA) > < ! −− unique i d o f page −−>
20 < ! ELEMENT r e s t r i c t i o n s ( #PCDATA) > < ! −− o p t i o n a l page r e s t r i c t i o n s −−>
21 < ! ELEMENT r e v i s i o n ( i d ? , t imestamp , c o n t r i b u t o r , minor ? , comment ? , t e x t ) >
22 < ! ELEMENT timestamp ( #PCDATA) > < ! −− a c co rd i ng to ISO8601 −−>
23 < ! ELEMENT minor EMPTY> < ! −− minor r e v i s i o n f l a g −−>
24 < ! ELEMENT comment ( #PCDATA) > < ! −− commit comment −−>
25 < ! ELEMENT t e x t ( #PCDATA) > < ! −− wik i markup −−>
26 < ! ATTLIST t e x t xml : space CDATA #FIXED ” p r e s e r v e ” >
27 < ! ELEMENT c o n t r i b u t o r ( ( username , i d ) | i p ) >
28 < ! ELEMENT username ( #PCDATA) > < ! −− username o f c o n t r i b u t o r −−>
29 < ! ELEMENT ip ( #PCDATA) > < ! −− i p o f c o n t r i b u t o r −−>
30 < ! ELEMENT upload ( timestamp , c o n t r i b u t o r , comment ? , f i l ename , s r c , s i z e ) >
31 < ! ELEMENT f i l e name ( #PCDATA) > < ! −− name o f uploaded f i l e −−>
32 < ! ELEMENT s r c ( #PCDATA) > < ! −− l o c a t i o n o f uploaded f i l e −−>
33 < ! ELEMENT s i z e ( #PCDATA) > < ! −− s i z e o f uploaded f i l e −−>

Figure 3.7: Document Type Definition (DTD) for the MediaWiki export format describing the con-
tent of a Wikipedia dump. Adapted from http://meta.wikimedia.org/wiki/Help:Export, accessed on
20 Dec 2013.

in figure 3.7. Dumps of large Wikipedia language versions including page revisions are
very large in size, since every revision is self-contained and contains the full page text (see
section 3.4). As of 2013, the decompressed XML dump for the English Wikipedia exceeds
eight terabytes. In order to handle amounts of data of this size, the dumps are split into
several, independent XML files and individually compressed.

While the XML dumps contain all page contents of Wikipedia, more volatile informa-
tion, such as page view statistics, user group assignments and page ratings, can be down-
loaded as additional SQL files.
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Name Functionality API License

MediaWiki API access all publicly available data web service –
Wikimedia Labs access all publicly available data database –
JWPL access articles and Talk pages Java LGPL
WRT access page revisions Java LGPL
Wikipedia Miner access articles Java GPL
WikiXRay quantitative statistics Python, R GPL
WikiHadoop process Wikipedia dumps in Hadoop Java ASL

Table 3.3: Tools and services for accessing Wikipedia. References are provided in section 3.6.2

3.6.2 Data Access

This section gives an overview of different tools and service for accessing the information in
Wikipedia. We do not include small, special purpose scripts provided byWikipedia users54,
but rather restrict the discussion to general purpose APIs, software libraries and services
(see table 3.3).

The MediaWikiAPI provides direct access to the databases of the MediaWiki installa-
tions which underly each Wikimedia project.55 It is available as a web service56 with wrap-
pers for various programming languages57. While the API supports many queries, pro-
vides various output formats and delivers up-to-date information, it is not suitable for most
moderate- and large-scale processing tasks, since the performance of the web service is
very limited and poses severe restrictions on non-privileged users. The API is used mostly
by bots (maintenance scripts), which receive privileged access rights in order to perform
maintenance activities within Wikimedia projects. In contrast to most other access tools,
the MediaWikiAPI cannot only be used to retrieve data, but also to update and add data.

The Wikimedia Labs is a scalable, cloud-based test and development environment that
provides virtual machines on which individual code can be run with direct access to repli-
cated versions of the live Wikimedia databases, including all language versions of Wiki-
pedia and Wiktionary.58 As the successor project of theWikimedia Toolserver 59, theWiki-
media Labs aim at providing both a development environment and a place for hosting online
tools intended to be used directly by the community.

54A compilation of these can be found under http://en.wikipedia.org/wiki/WP:WikiProject_User_scripts/

Scripts
55http://www.mediawiki.org/wiki/API
56http://en.wikipedia.org/w/api.php
57http://www.mediawiki.org/wiki/API:Client_code
58https://wikitech.wikimedia.org
59http://toolserver.org
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The unique advantage of running software in the Labs environment is the direct data-
base access. While not granting access to restricted information, these databases offer all
information that is publicly available for each Wikimedia project. This includes a wider
range of information than the downloadable XML data dumps have to offer. Furthermore,
the databases are always up-to-date. Beyond that, no particular API is provided to access
the data in a structured manner.

Depending on the software requirements, code can either be hosted on an individual
virtual machine, or it can be deployed to the Tool Labs, which aggregate smaller tools re-
lated to Wikimedia projects. This offers a new way of disseminating applications which
originate in research projects for use by the wider public.

As of the time of writing, no long-term experiences with theWikimedia Labs have been
reported regarding the performance of the runtime environment, because the project is still
in an early beta phase. The former Toolserver struggled with performance issues, which
made large scale processing of Wikipedia data infeasible. However, this is supposed to be
solved in the Wikimedia Labs.

The Java Wikipedia Library (JWPL) Zesch et al. (2008) offer a Java-based programming
interface for accessing all information in different language versions ofWikipedia in a struc-
tured manner. It includes a MediaWiki markup parser for an in-depth analysis of page con-
tents. JWPL works with a database in the background, the content of the database comes
from a dump, i.e. a static snapshot of a Wikipedia version. JWPL offers methods to access
and process properties like in- and outlinks, templates, categories, page text —parsed and
plain— and other features. The Data Machine is responsible for generating the JWPL data-
base from raw dumps. Depending on what data are needed, different dumps can be used,
either including or excluding the Talk page namespace.

TheWikipedia Revision Toolkit (WRT) Ferschke et al. (2011) expand JWPL with the abil-
ity to access Wikipedia’s revision history. To this end, it is divided into two tools, the
TimeMachine and the RevisionMachine . The TimeMachine is capable of restoring any past
state of the encyclopedia, including a user-defined interval of past versions of the pages.
The RevisionMachine provides access to the entire revision history of all Wikipedia articles.
It stores revisions in a compressed form, keeping only differences between adjacent revi-
sions. The Revision Toolkit additionally provides an API for accessing Wikipedia revisions
along with the metadata like the comment, timestamp and information about the user who
made the revision. A more detailed description is provided in appendix A.1

WikipediaMiner Milne andWitten (2009) offer a Java-based toolkit to access and process
different types of information contained in Wikipedia articles. Similar to JWPL, it has an
API for structured access to basic information of an article. Categories, links, redirects and
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the article text, plain or as MediaWiki markup, can also be accessed as Java classes. It runs a
preprocessed Java Berkeley database in the background to store the information contained
in Wikipedia. Wikipedia Miner has a focus on concepts and semantic relations within
Wikipedia. It is able to detect and sense-disambiguateWikipedia topics in documents, i.e. it
can be used to wikify plain text. Furthermore, the framework compares terms and concepts
inWikipedia, calculating their semantic relatedness or related concepts based on structural
article properties (e.g. in-links) or machine learning. In contrast to JWPL, it cannot be used
to access and process the revision history of an article. The capability of its parser is limited,
e.g. no templates or infoboxes can be processed.

WikiXRay is a collection of Python and GNU R scripts for the quantitative analysis of
Wikipedia data (Ortega, 2009). It parses plain Wikimedia dumps and imports the extracted
data into a database. This database is used to provide general quantitative statistics about
editors, pages and revisions.

WikiHadoop is a stream-based input format for Hadoop60, an open-source software for
distributed computing. While WikiHadoop61 does not provide any direct support for ac-
cessing and processingWikipedia data, it manages the segmentation of the large data dump
for distribution on a compute cluster. Provided with a compressed version of the XML data
dump, WikiHadoop decompresses the data on the fly, splits the stream into chunks of single
page revisions or pairs of adjacent revisions and feeds these chunks to individual process-
ing units (i.e. mappers). This alleviates the development of code for large scale analysis of
Wikipedia data which is only concerned with local information, i.e. the content of a single
revision or a pair of revisions.

3.7 Other Wikimedia Projects

While this thesis in general and this chapter in particular focuses on Wikipedia, it is never-
theless important to mention some of its sister projects that closely interact withWikipedia
and share many of its foundational concepts. A full overview can be found on the website
of the Wikimedia Foundation62.

Wiktionary is a multilingual, collaboratively created, online dictionary that emerged
from the desire to exclude linguistic and lexicographic information fromWikipedia articles
(Meyer, 2013). Established in December 2002 as a companion toWikipedia, Wiktionary has
grown into a large project of its own right.

60http://hadoop.apache.org
61https://github.com/whym/wikihadoop
62http://wikimediafoundation.org/wiki/Our_projects
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Instead of encyclopedic knowledge, which is the center of attention in Wikipedia, Wik-
tionary is primarily concernedwithword definitions, including additional information such
as etymology, pronunciation, and lexical-semantic relations. Going beyond a traditional
dictionary, Wiktionary further includes supplemental content such as a thesaurus, a rhyme
guide, phrase books or language statistics.63

Like Wikipedia, Wiktionary is available in different language versions, whereas each
language version might also describe words from other languages using the native lan-
guage of the respective version as a point of reference. For example, the EnglishWiktionary
“aims to describe all words of all languages using definitions and descriptions in English”63.
In short, each Wiktionary language version is a monolingual dictionary for multiple lan-
guages.

Since Wiktionary emerged from Wikipedia, it shares many of its basic principles and
technical details, such as user discussion pages for coordination of collaborative efforts and
cleanup templates for identifying quality problems. This is why the techniques for quality
assessment described in this thesis are, at heart, also suitable for Wiktionary. However,
as an online dictionary, Wiktionary has different aims and different quality standards than
Wikipedia. Therefore, the underlying quality model which we define for Wikipedia in this
work (see chapter 4) has to be adapted to Wiktionary.

Wikidata is a multilingual, collaboratively created, structured knowledge base intended
to serve as a central information repository for all Wikimedia projects.64 At its core, Wiki-
data is intended to centralize the management and storage of interwiki links, infoboxes and
lists inWikipedia. Instead ofmanaging the cross-language links between language versions
in every article separately, Wikidata provides a central repository of concepts which con-
tain links to all corresponding articles in every language version. This means that a newly
added article for a given topic will automatically receive all correct interwiki links when
connecting the article to the Wikidata concept. In addition to centralizing interwiki links,
Wikidata also contains structured information for many of the concepts stored in the data-
base. A Wikidata-entry for a person, for instance, will typically hold information about
their date and place of birth, occupation and other relevant information. This information
can be used to automatically fill the infoboxes in all language versions of Wikipedia thus
eradicating the problem of out-of-sync information and helping to keep Wikipedia as a
whole up to date.

Once deployed in full to all language editions of Wikipedia and other major projects,
such as Wiktionary, Wikidata has the potential to increase the consistency and currency of
each individual resource and improve the interconnectedness of all Wikimedia projects.

63http://en.wiktionary.org/w/index.php?oldid=23894302
64http://www.wikidata.org/w/index.php?oldid=73888516
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3.8 Chapter Summary

In this chapter, we introducedWikipedia, its main structures and properties, its community
and ways to process the large amounts of data it contains. We established that the policies
governing Wikipedia and shaping its content are collaboratively defined and change over
time. While large parts of these policies are shared across the different language versions,
each edition has an individual take on the wiki philosophy which leads to a different culture
in each Wikipedia.

Even though Wikipedia contains an almost incomprehensibly large set of rules and
guidelines, the basic principles can be boiled down to the five pillars of Wikipedia which
build the foundation for a soft security system. A unique characteristic of Wikipedia is the
revision history that is kept for every page and which allows keeping track of every change
ever made to the encyclopedia. At the same time, the revision history is the reason for the
large amount of data Wikipedia sums up to, which makes it difficult to process as a whole.

User communication is mainly performed on the different Talk pages, an unstructured
discussion space in dedicated namespaces. Article Talk pages are used to coordinate the
article development and discuss the future of an article. User talk pages, on the other hand,
are used as the main means of communication between the users. There are different ways
to access Wikipedia ranging from direct access to the live databases via a web API over
manual processing of downloadable XML dumps to dedicated, database-driven program-
ming interfaces. The best solution depends on the applications’ need for data currency and
speed.

While themain reason forWikipedia’s success is its policy that everyone can contribute,
the same policy also constitutes the greatest challenge. In order to establish Wikipedia as
a trustworthy and comprehensive reference work with a quality level equal to edited en-
cyclopedias, Wikipedia needs a quality management process that can cope with the almost
anarchic culture that Wikipedia is based on. Taking into account the unprecedented size
of the larger Wikipedia editions, a satisfactory solution can only be reached with compu-
tational assistance. The remainder of this thesis will therefore sketch how computational
methods can assist the community in managing and improving the quality of Wikipedia.
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Chapter 4

Information Quality

“Quality is never an accident; it is always the result of high
intention, sincere effort, intelligent direction and skillful
execution; it represents the wise choice of many
alternatives.”

— William A. Foster

In this chapter, we discuss the concept of information quality along with theoretical and
practical considerations of its measurement. We start with a literature review and identify
existing theories and models targeted at describing and quantifying information quality
(section 4.1). We then narrow our focus on writing quality and discuss how a model for
textually represented information can be derived from a generic information quality model
and furthermore examine the factors that pertain to information quality management (sec-
tion 4.2). We finally review the mechanisms and policies regarding quality assessment and
assurance in Wikipedia (section 4.3) from which we derive an article quality model (sec-
tion 4.4). We conclude the chapter with a summary of our findings (section 4.5).

4.1 Information Quality

Claude Shannon was among the first to develop a quantitative definition of information in
order to provide a sound theoretical foundation for his model of communication. His defini-
tion employs the mathematical uncertainty-measure of entropy as a means to quantify the
amount of information in a message, i.e. the information content of a message (Shannon,
1948).

While his quantitative definition is useful for the examination of data transmissions and
machine-to-machine communication, it falls short of capturing the semantic aspects that
we usually associate with the term information and which Shannon regards as “irrelevant
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to the engineering problem” (Shannon, 1948, p. 379). In fact, Shannon’s definition has no
connection to the semantic content of a message at all and even declares that there is po-
tentially more information, i.e. entropy, in chaos and randomness than in structure (Sveiby,
1996). In order to approach a more qualitative definition of the concept of information that
more closely resembles the intuitive meaning of the word, one has to take semantic, prag-
matic and even aesthetic factors into consideration, which are not as easily captured in
codes and numbers.

We will refrain from attempting to define a generic concept of information and rather
approximate its meaning indirectly by discussing information quality . It is not surprising
that quality considerations of something as intangible as information are subject to a wide
range of uncertainties arising from the different interpretations of the concept, especially
given that quality itself is also not an easy concept to define.

Information quality (IQ) is generally regarded as a multi-faceted, multi-dimensional
concept. In a review of information quality literature, Eppler and Wittig (2000) identify
seven basic definitions of information quality, which are often combined in different ways.
In summary, high quality information must be fit for use by information consumers in a
particular context , meet a set of predefined specifications or requirements , and meet or exceed
user expectations . Thus, high quality information provides a particular high value to the end
user .

Models, Frameworks and Standards. An information quality model is a concise system of
evaluable criteria which instantiate the aforementioned definitions in a way that they can
be incorporated in an information quality framework . Such frameworks ideally ground the
quality model to an underlying theory, define a scheme for analyzing and solving quality
problems and provide metrics for quality measurement (Eppler and Wittig, 2000). Quality
standards furthermore provide a frame of reference necessary for interpreting the output
of the quality measures. In other words, while the quality model defines the dimensions
along which we measure quality, themetrics define howwe measure the quality along each
dimension and the standards define how we interpret the output of these measurements.

As surveys of IQ frameworks (Eppler and Wittig, 2000; Knight and Burn, 2005) show,
there is a large dimensional overlap betweenmost available IQmodels. These overlaps have
often been used as indicators for the most salient and most important dimensions, which,
however, ignores the fact that the various models operate at different levels of granularity,
in different application contexts and for different types of information.

Since the concept of quality is inherently context-specific, there is no universal IQmodel
that truly captures all aspects of information quality. However, we can categorize IQ frame-
works and models with respect to the extent they have been adapted to particular contexts.
We regard a quality framework to be generic , if it has not clearly been designed for a spe-
cific application context or for a particular information type. We furthermore distinguish
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between three adaptation processes, which can be used to customize a generic framework
for a given task.

Medium Adaptation: Adaptation with respect to the representation of the information
(e.g. text, video, numerical data) and the way of its distribution or storage (e.g. web, print).

Application Context Adaptation: Adaptation with respect to the intended application
context in which the information is used or in the context of which it is evaluated. For
example, the information quality requirements of a database for medical records are
different from the requirements of a public encyclopedia.

User Adaptation: Adaptation with respect to the users that interact with the information.
This includes factors such as the number of users, their expertise and their way of
interacting with the information (e.g. production, consumption or processing of
information) (Lee et al., 2002).

These adaptation processes are not mutually exclusive. In practice, information quality
models often exhibit mixtures of adaptations e.g. with respect to a certain medium and
application context.

While generic models aim to represent the universal aspects of quality and minimize
the adaptation to a specific context or information type by means of more coarse-grained
dimensions, specific models employ a more fine-grained set of dimensions to reflect the
particular needs of the task at hand. Within a single model, be it generic or specific, all
dimensions must be disjunct without any semantic overlap (Rohweder et al., 2008).

Even though generic models are designed without a specific application context in mind
so that they can be applied to many different settings, they can only be interpreted when
they are contextualized in an application setting.

Wang and Strong Model. One of the most cited models of information quality has been
developed by Wang and Strong (1996). Not only has this model been widely used in the
last 17 years, it is also recognized as one of the few generic approaches to information
quality that take a middle ground between a solid theoretical foundation and practical ap-
plicability (Eppler and Wittig, 2000). In a two-stage survey, Wang and Strong asked data
consumerswith varying backgrounds to identify the individual aspects of data quality along
with their perceived importance on a scale from 1 to 9. Overall, they identified 118 different
attributes with a high average importance score and a sufficient stability across all partici-
pants. Grouping these attributes into higher level categories and merging similar concepts,
finally lead to the information quality model shown in figure 4.1. The model consists of 15
quality dimensions that are organized qd four categories, the intrinsic , contextual , represen-
tational and accessibility category.

The intrinsic category captures properties innate to information entities and suggests
that data has a certain quality on its own right – independent from its usage, the user or the
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Information
Quality

Intrinsic Contextual Representational Accessibility

Believability

Accuracy

Objectivity

Reputation

Value-added

Relevancy
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Completeness

Amount of
information

Interpretability

Ease of
understanding

Consistency

Conciseness

Accessibility

Access security

Figure 4.1: Hierarchical information quality model after Wang and Strong (1996)

creator. The contextual category captures the quality in context of the task at hand within
which the information entity is used. The representational category furthermore takes into
account how the information is represented and whether it can be efficiently processed by
the user. Finally, the accessibility category is concerned with the trade-off between security
and accessibility, i.e. the ease of accessing information by permitted users.

Due to its strong empirical foundation and its balance between generality and practical
applicability, the Wang and Strong model has served as the basis for many IQ frameworks.
Among others, the German Association for Information and Data Quality (DGIQ) directly
adapted this framework with minor adjustments65 as the standard for a user-centric IQ
model (Rohweder et al., 2008).

Relationships Between Quality Dimensions. While quality dimensions are supposed to
be disjunct within a single model and should be observable in isolation, they are seldom
truly independent from each other. Eppler and Wittig (2000) list typical trade-offs between
certain pairs of dimensions, such as security vs. accessibility, currency vs. accuracy, or con-
ciseness vs. scope, which suggest that a piece of information, or by extension, a whole
information system, can only be optimized for one of the dimensions in each pair. That
is, when a document gets more elaborate it becomes less concise. While some applica-
tions call for an optimization towards one end of the trade-off spectrum (e.g. security over
accessibility), other applications rather seek a balanced calibration.

65The dimension access security was replaced by ease of manipulation , which was originally included in an
earlier stage of the Wang and Strong model under the term ease of operation . This adaptation stresses the
user-focus of the DGIQ-model (Rohweder et al., 2008)
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Schaal et al. (2012) give a systematic overview of the relationships between a set of
quality dimensions for the social web context. Their model not only contains the trade-off
relationship, but also enabling relationships such as “verifiability helps believability” . How-
ever, one can argue that many of the dimensions in an enabling relationship are merely
fine-grained distinctions of the same higher-level dimension and are thus positively corre-
lated. That is, verifiability and believability might be considered as the single dimension
trustworthiness .

The relationships between quality dimensions, particularly the trade-off relations, are
important to consider when defining quality standards for the purpose of quality assurance.
It is not enough to define what constitutes high quality within every dimension of a model,
but it also has to be considered how to balance the quality across dimensions.

Measurability ofQuality Dimensions. While quality models build the formal foundation
of a quality framework and identify the dimensions along which the quality of information
is to be evaluated in a given context, not all of these dimensions are equally well observable
in the data let alone measurable automatically. The usefulness of an information quality
framework therefore largely relies on the provided metrics for measuring quality along the
dimensions the framework defines. The problem of measurability decomposes into four
separate aspects (cf. Bizer, 2007, pp.36–39):

Consistency: How well and how consistently can humans rate quality along each
dimension? In other words, is each dimension well enough defined in order to reach
reliable judgments with sufficient agreement?

Subjectivity: Are quality judgments along a given dimension inherently subject to
subjective preference or can it be objectively rated? This aspect will also influence
consistency that was mentioned above.

Operationalizability: How can we operationalize the judgment along each dimension and
what are the indicators on which the judgment is based. In other words, what are the
features on which a quality assessment metric can be based for each dimension?

Interpretability: Is it possible to map the output of given metric to a quality standard in
order to be able to interpret the quality ratings on a scale?

In the context of automatic quality assessment, operationalizability is the most imminent
issue. Yaari et al. (2011) distinguish between measurable and non-measurable criteria, i.e.
whether criteria can be reliably assigned by a computer from the text alone without any
human intervention, and propose a set of metrics for automatically rating the articles ac-
cording to the criteria of the former category. Similarly, Stvilia et al. (2007) provide a list of
measures that correlate with user judgments from the subset of measurable dimensions in
their quality model (see section 4.4). Non-measurable dimensions cannot be operational-
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ized directly but need human intervention in the form of manual quality judgments from
which correlated aspects can be learned with statistical methods.

Arazy and Kopak (2011) studied the consistency of quality judgment by 270 under-
graduate students rating 100 Wikipedia articles on a Likert scale from 1 to 7 along four
dimensions66 and report poor intra-class agreement levels which did not exceed 0.17. One
of themain conclusions drawn from this study is that users have a hard time judging quality
within the constraints of an abstract model on a fixed scale. This is not so much a problem
of the users not being able to consistently agree on the quality of an article (or in general of
an information entity) but more a problem of expressing the subjective quality perception
in an abstract rating system. We therefore argue that quality judgments provided in natural
language but analyzed according to a well defined model will provide better insights into
information quality than having a large crowd of non-experts provide ratings in an abstract
form. One of the approaches to assessing article quality presented in this thesis therefore
analyzes the discussions of Wikipedia users with respect to information quality judgments.

Information Quality Management. Having defined the terms IQ framework, IQ model
and IQ standard earlier in this section, we close with a definition of the processes in which
they are employed. IQ assessment is the general task of judging the quality of an informa-
tion entity. Along the lines of the argumentation in this thesis, this is achieved within an
IQ framework. IQ assurance aims at maintaining a high standard of information quality by
continuously monitoring the information quality of all information entities in a resource.
This is particularly achieved by identifying and avoiding quality problems. Quality prob-
lems are defined as violations of a quality standard in any of the quality dimensions defined
by the quality model. IQ improvement furthermore steers towards a higher quality level,
e.g. by providing feedback to the community about quality problems and inconsistencies
along with guidelines how to resolve these issues. IQ management finally combines IQ
assurance and IQ improvement into an integrated process that is tailored towards a partic-
ular application context and community. However, it is not only directed at the information
entities alone but also at the policies, guidelines and tools responsible for maintaining, se-
curing and storing them (Stvilia et al., 2008) and furthermore shapes the decision making
processes involved (Ge, 2009). It has to be noted that these terms are not used consistently
across the literature and are often employed interchangeably in different contexts (Eppler,
2003).

66A subset of the Wang and Strong model: accuracy, completeness, objectivity, representation
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4.2 Text and Writing Quality

A large amount of information that people interact with on a daily basis is represented in the
form of text. Since texts are carriers of information, text quality can be analyzed in terms of
information quality. However, as natural language is very powerful, expressive and subject
to many subtleties, applying a generic, coarse-grained information quality model to text
will leave many facets unexplained and will thus be insufficient.

A quality model adapted for textual information should therefore consider the pecu-
liarities of the medium. Above all, this involves the incorporation of a notion of well-
writtenness, or, in other words, the writing quality of a text. While text quality models
capture the overall quality of textually represented information, writing quality is a sub-
ordinate concept that mainly reflects the quality of its representation. Thereby, it captures
both formal aspects of language correctness, sometimes also referred to as linguistic qual-
ity , and creative aspects of language use, such as the development of ideas within a text
or the effective use of rhetorical devices. In the following, we discuss the major aspects
of writing quality which we will further break down in section 4.4 when introducing our
Wikipedia article quality model.

Language correctness. In its essence, language correctness concerns the proper use of
the lexicon and the compliance of a text with standards and conventions prescribed by the
grammar of the given language. However, since languages are not static systems and rather
subject to constant development, correctness can only be partially derived from a prescrip-
tive grammar and lexicon and has to be evaluated in the light of the dynamics of language
use. Furthermore, the binary notion of correctness is insufficient for real world texts and
should rather be regarded as a graded scale of language acceptability (Gordesch and Dret-
zke, 1998). For example, a spell checker might define the colloquial expression wassup67 as
incorrect, although the term might very well be acceptable in the context of social media.
Also, non-standard grammatical and syntactic constructions might be considered incorrect
in one context while being acceptable in another. Therefore, automatic spell and grammar
checkers are helpful resources for text quality assessment, especially in the context of ency-
clopedias, which aim for standard language usage. However, since collaboratively created
texts will always reflect the dynamics of language, the concept of language correctness has
to be taken with a grain of salt.

Writing Traits and Rubrics. Beyond mere correctness, academic standards in the lan-
guage arts define traits of writing quality with the goal of standardizing the assessment
of student writing and giving students feedback on their state of writing proficiency. A

67Meaning what’s up , a simplified form of greeting, see http://www.urbandictionary.com/define.php?term=

Wassup, accessed on April 4th, 2014
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widely adapted framework is the six traits scoring rubric for writing assessment described
by Spandel (2012). Derived from a large scale analysis of student essays in order to find
common characteristics of good writing, the six traits aim to deliver a guide for assessing
and teaching writing at any level of proficiency and for every audience and text type. In
short, the six traits capture the following aspects of a text:

Ideas and development: Development of ideas, clarity and focus of the text, level of detail.
Organization: Order, presentation and structure of the text.
Voice: Choice of an appropriate68 tone and stylistic level.
Word choice: Choice of appropriate68 words and register.
Sentence fluency: Rhythm and flow of language; readability and understandability.
Conventions: Language correctness.

While they have been developed for language teaching, the six traits have successfully been
applied in the area of language technology as a base model for automatically assessing
the quality of scientific journalism (Louis, 2013). Following the argumentation of Louis,
we argue that these rubrics can be good indicators of writing quality in the context of an
encyclopedia if they are sufficiently adapted to the genre. In our Wikipedia article quality
model described in section 4.4, many of the dimensions in the writing quality category are
therefore based on the theoretical foundation of the six traits.

Readability. From a computational perspective, readability is among the oldest and best
researched aspects of writing quality. In order to determine the level of reading compe-
tency needed to understand a text and to quantify the clarity of writing, many of the early
readability metrics rely on textual surface features. To this end, shallow properties, such as
the average number of words per sentence or characters per word, are combined in differ-
ent formulas (Kincaid et al., 1975; Smith and Senter, 1967; Coleman and Liau, 1975; Flesch,
1948; McLaughlin, 1969; Gunning, 1969). In a recent empirical study (Pitler and Nenkova,
2008), these shallow features have not proven to correlate highly with human readability
judgments. They could rather show that lexical, syntactic, semantic or discourse features
are more predictive of howwell a text is written with respect to reading ease, since these as-
pects include text organization and lexical difficulty in the equation. Ultimately, readability
assessment is an audience specific endeavor, since it aims to determine the comprehen-
sibility of a text for a particular target audience. This notion, however, is incompatible
with writing quality assessment intended for a general audience. We therefore have to re-
interpret readability scores as an absolute measure of complexity and learn from the data
which readability level is regarded as appropriate by the majority of the readers (Louis,
2013).
68Appropriate for the genre of the text, the audience, the publication medium and also the writing proficiency
of the author as indicated in the six traits guidelines.
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Text Organization. While readability is mainly concerned with the sentence level, text
organization on the document level is responsible for how well a text is readable as a whole
and how easy the argumentation can be followed.

Coherence describes the internal consistency of a text exhibited by a “continuity of
senses” (de Beaugrande and Dressler, 1981, p. 84). This means that concepts and arguments
must be logically connected in order for the recipient to be able to make sense of the text
as a whole. On the surface level, the cohesion of a text captures how well the sentences in
a text hold together. Cohesion helps to follow the argumentation in a text and is mainly
reached with the help of coreference chains, ellipsis, substitution, conjunction and lexical
chains (Halliday and Hasan, 1976). While a cohesive text has a higher probability of being
coherent, it is still possible for a text to be both cohesive and incoherent.

Motivated by theories of discourse structure (Grosz and Sidner, 1986) and local coher-
ence between adjacent sentence pairs (Grosz et al., 1995), many metrics have been devel-
oped that incorporate discourse connectives and coreference analyses into measures of text
organization. Louis (2013) gives a detailed overview of related work in this area.

Moreover, psycholinguistic coherence measures, such as Coh-Metrix (Graesser et al.,
2004, 2011; McCarthy et al., 2006), aim to reflect the coherence of texts with a combination
of textual features and metrics and thereby seek to replace the readability metrics on the
sentence level while linking the output to psycholinguistic theories. Coh-Metrix, as one
example, combines 54 metrics ranging from shallow surface features similar to the ones
employed in readability assessment over latent semantic analysis and frequency based lex-
ical models to a cue-based analysis of discourse connectives.

While most of the above mentioned approaches rely on a strict linguistic theory of
discourse structure, the statistical revolution in NLP also produced new data-driven ap-
proaches that aim to determine patterns in the discourse structure from the data. Barzilay
and Lapata (2005), for example, apply the centering theory to automatically learn entity
transitions between adjacent sentences and thus overcome the need for explicit computa-
tion. Louis (2013) furthermore proposes a data-driven approach for measuring the inten-
tional structure of writing by using syntax as a rough proxy rather than explicitly annotat-
ing the intentional structure for each text genre manually.

4.3 Quality Management Mechanisms in Wikipedia

In an open, collaborative environment such as Wikipedia, no central institution or com-
mittee regulates how quality is to be measured and what standards are to be used as a
frame of reference. The quality management process is rather defined by an agglomeration
of constantly changing guidelines and policies which are largely fragmented and distributed
over different places in Wikipedia.
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Three central directories give a comprehensive overview of the available guidelines69,
policies70 and best practices71.

Distinguished Content. The central frame of reference regarding content quality inWiki-
pedia is the distinguished content certification . The highest level of distinction in the English
Wikipedia is the featured content level , which means that the content meets all quality cri-
teria for Wikipedia content72, has been evaluated in peer review, and is thus eligible to be
featured on the Wikipedia main page on a rolling basis. This certificate not only exists for
articles, but also for other kinds ofWikipedia content, such as lists, pictures, sounds, portals
or topics73. The featured article criteria74 state that an eligible article, in addition to abiding
to the aforementioned content policies, should meet the following requirements:

– Be well written, comprehensive, well researched, neutral and stable

– Have a concise lead section

– Be well structured, well referenced and well illustrated

– Have an adequate length and an appropriate level of detail

While most of these criteria are illustrated by accompanying guidelines, there is no ex-
act definition of what differentiates, say, very good writing from mediocre writing and
where one should draw the line. Rather than employing a fixed, external frame of reference
for quality assessment, the quality judgment is done by comparison to other articles with
featured status. Since these existing featured articles are further improved over time, the
standard-by-comparison rises, making it more and more difficult for new articles to qualify
for featured status. This becomes most evident when comparing the featured articles from
years ago with today’s featured articles. If a featured article gets demoted, i.e. the featured
status is removed in another peer review process, this is rarely caused by a degradation of
its quality. The article rather has not improved as fast as the collective standard has risen.
Due to this fact, and due to the complexity of the peer review process described below,
only a very small number of articles has featured status (4,782 or about 0.1% in the English
Wikipedia).

Articles that largely comply with the featured article criteria but fall short in some of
the categories can qualify for good article status , a lower level distinction that only exists
for articles. As of the time of writing, less than 0.3% of all articles in the English Wikipedia
have this status.
69http://en.wikipedia.org/wiki/WP:LGL
70http://en.wikipedia.org/wiki/WP:LOP
71http://en.wikipedia.org/wiki/WP:MOS
72http://en.wikipedia.org/wiki/WP:CONPOL
73http://en.wikipedia.org/wiki/WP:FC
74http://en.wikipedia.org/wiki/WP:FACR
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Importance

Quality Top High Mid Low Unassessed Total

A 178 316 512 281 70 1,357
B 10,399 19,847 29,877 21,626 12,421 94,170
C 7,868 22,263 49,194 58,698 32,800 170,823
Start 14,978 63,960 255,432 565,328 224,062 1,123,760
Stub 3,894 26,742 188,795 1,337,343 870,398 2,427,172
List 2,325 8,732 24,082 61,827 49,701 146,667

Featured Articles 1,002 1,514 1,401 794 162 4,873
Featured Lists 133 511 593 542 125 1,904
Good Articles 1,637 3,736 7,303 6,867 1,509 21,052

Overall Assessed 42,414 147,621 557,189 2,053,306 1,191,248 3,991,778
Overall Unassessed 117 319 1,379 16,001 466,465 484,281
Total 42,531 147,940 558,568 2,069,307 1,657,713 4,476,059

Table 4.1: Number of articles per WikiProject quality level and importance category in the English
Wikipedia according to http://tools.wmflabs.org/enwp10/cgi-bin/table2.fcgi accessed on 04 April
2014. A,B,C, Start, Stub, List = WikiProject Quality Grades

Considering that less than 0.4% of Wikipedia articles received a distinction for excellent
content, it is safe to assume that they cannot be representative of all the good content in
Wikipedia.

Peer Review. Featured and good articles are determined in a peer review process75. An
article first has to be nominated by a community member and will only be accepted if no
major cleanup templates are assigned to the page. If accepted, the article is listed among
the featured or good article candidates. In a next step, reviewers are recruited from within
the community to manage the further process. Reviewing takes place on a dedicated sub
page in the Talk namespace of the article. In collaboration with a group of volunteers, open
issues are addressed until a final verdict is reached. In case the article is eligible for featured
or good status, the corresponding category is assigned. Otherwise, the case is closed and
peer review can be restarted after two weeks time. Peer reviews can also be requested in
other contexts related to quality assurance and assessment.

WikiProject Article Quality Ratings. Since the peer review process described above is
too complex and labor intensive for judging the quality of every article in Wikipedia, the
problem task has been distributed across the individual WikiProject subgroups (see chap-
ter 3.3.4). Assuming that WikiProject members are experts in their subject area, they are

75http://en.wikipedia.org/wiki/WP:REVIEW
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asked to rate the importance of an article for their field along with its quality on a prede-
fined scale. Article importance ratings range from top to low importance, while the quality
levels range from A to C in descending order. Overly short or newly created articles can
furthermore receive a stub or start grade respectively. Table 4.1 shows the numbers of ar-
ticles per quality level and importance category. It additionally lists the number of pages
that received a particular distinguished content certification (see above).

The quality judgments are centrally gathered by a bot (WP 1.0 bot) and used to monitor
the overall quality status of Wikipedia. Furthermore, the ratings are the basis for compiling
Wikipedia offline releases, which are created on an irregular basis.76 While the WikiPro-
ject quality assessment scale is fixed in terms of quality levels, no exhaustive criteria are
defined for each grade77. Moreover, while featured and good article status is assigned in
a well-defined peer review process, the WikiProject quality assessment is subject to local
customs of the respective WikiProject. Consequently, articles with the same quality level
assessed by members of different WikiProjects might considerably differ in their actual
quality. In short, the assigned quality levels are not necessarily comparable across Wiki-
pedia. Finally, even though most articles in the English Wikipedia have been rated with
this rating scheme at least once, there is no information available as to how recent a certain
rating is. It largely depends on the activity of the members of a WikiProject how well the
ratings reflect the current state of affairs.

User Feedback. While distinguished content and WikiProject quality ratings are grades
assigned by activeWikipedia authors, a large fraction ofWikipedia users are purely passive,
i.e. they exclusively read but do not contribute to the encyclopedia. In order to incorpo-
rate the opinions and views of these users into the quality management process, the Article
Feedback Tool (AFT) has been developed. It allows the wholeWikipedia community to eval-
uate articles along the dimensions Trustworthy , Objective ,Well written and Complete on a
five-star scale. In addition to the actual article ratings, the users were furthermore en-
couraged to provide information about their knowledge in the subject area of the article in
order to put these anonymous ratings into perspective. The user interface is displayed in
figure 4.2. Even though the ratings ask for judgments on a five-star scale, users tend to rate
with extreme scores that merely reflect a binary classification in each dimension (good vs.
bad) (Flekova et al., 2014). Additionally, the high correlation between the four dimensions
renders separate analyses difficult.

Cleanup Templates. As described in chapter 3.2.4, the template system in Wikipedia is
not only used to embed recurring content intoWikipedia pages, but also as a tagging system

76http://en.wikipedia.org/wiki/WP:1.0
77 http://en.wikipedia.org/wiki/WP:ASSESS gives a brief description of each category along with a sample
article
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Figure 4.2: The rating interface of the Article Feedback Tool (v4) as displayed on the bottom of an
article.

for various applications. One of these applications is marking open issues in articles that
need attention of a contributor. While these cleanup templates leave a note on the tagged
page, they also enlist that page in the corresponding cleanup category. Furthermore, short
notes can be added as parameters to the template in order to document the issue and provide
additional details. Thus, the cleanup template system constitutes an issue tracker for quality
assurance and is used as the basis for our approach to automatically identify quality flaws
in Wikipedia articles that is described in chapter 5.

Flagged Revisions and Pending Changes. As described in chapter 3.4, the flagged revi-
sions extension and, in the English Wikipedia, the pending changes extension are used to
hide new changes from the general public until they have been reviewed by trusted com-
munity members. While this review process is, in practice, not really suitable to improve
the article quality, it helps to prevent vandalism and the associated deterioration of article
quality.

Article Discussions. Even though the Wikipedia Talk pages (see chapter 3.5) are not, by
design, instruments for qualitymanagement, the article Talk pages are nevertheless the cen-
tral platform for any communication regarding article development and work coordination.
On these pages, both the active contributors and the more passive readers exchange their
thoughts on how the article can best be improved and share criticism regarding its quality.
However, since these discussions are largely unstructured and often spread over several
Talk archives, it is not easy to keep track of decisions made in the past. Furthermore, a
study by Schneider et al. (2011) has shown that new users are easily confused by the lack
of discourse structure and therefore do not contribute in larger discussions. We therefore

57



Chapter 4. Information Quality

propose an approach in chapter 6 to automatically analyze these discussions in order to
provide structured feedback regarding quality management decisions.

Overall, while having been successful in the past to make Wikipedia a reliable infor-
mation source and one of the central reference works on the Internet, the quality manage-
ment mechanisms based on community decisions alone are unlikely able to cope with the
exploding size of Wikipedia. It is therefore necessary to provide computational assistance
without patronizing the users and imposing too many restrictions on the community, their
work and their decisions.

4.4 An Article Quality Model for Wikipedia

As we have seen in the outset of this chapter, the concept of information quality largely de-
pends on different contexts, for example the intended application in which an information
entity is supposed to be used, the target audience, or the form of representation. Therefore,
a quality model for Wikipedia articles has to consider the characteristics and purpose of an
encyclopedia, has to reflect its collaborative and intercultural nature and has to address the
peculiarities of its representation.

Several attempts have been made to adapt existing information quality models and
frameworks to encyclopedias in general and to Wikipedia in particular (Crawford, 2001;
Stvilia et al., 2007, 2008; Lichtenstein and Parker, 2009). Also the Wikipedia community
formed a Quality Task Force (QTF) in order to develop a quality model that can measure
“the ability of a [W]ikipedia article to meet the expectations and needs of the article’s tar-
get audience, i.e. the readers of the article”78. In four categories, the QTF model defines
quality dimensions capturing requirements of content , demand , form and the project . While
the first three dimensions consider quality aspects of individual articles, the latter applies
to greater structures, such as whole subject areas and the integration of individual articles
within these areas.

While these attempts succeed in incorporating the requirements of a collaboratively
created encyclopedia with respect to intrinsic and contextual information quality, the rep-
resentational aspects fall short in most of these models. The quality of writing, while being
a key aspect for a text resource such as Wikipedia, is not clearly distinguished from the
intrinsic quality aspects or merely represented in an undifferentiated, aggregate form. As
the only exception, the QTFmodel attempts to explicitly include representational aspects of
Wikipedia articles. However, the model has never left the stage of a working definition and
it is neither based on a sound theoretical foundation nor integrated in a quality assessment
framework.

78http://strategy.wikimedia.org/w/index.php?oldid=65341

58

http://strategy.wikimedia.org/w/index.php?oldid=65341


4.4. An Article Quality Model for Wikipedia

Article Quality

Intrinsic Contextual Writing Organizational

Verifiability

Accuracy

Neutrality

Completeness

Coherence

Currency

Reputation

Value-added

Amount of
information

Complexity

Volatility

Development

Structure

Tone

Word choice

Fluency

Conventions

Understandability

Cohesion

Illustration

Grammaticality
and Spelling

Categorization

Connectivity

Figure 4.3: Proposed model for article quality in Wikipedia

We therefore build upon the previously discussed generic model of information quality
byWang and Strong (1996) and, under consideration of the related adaptations of this model
for Wikipedia, define a unified model of article quality paying special attention to textual
properties. This model is supposed to represent the writing quality of Wikipedia articles
in the sense that we defined in section 4.2. It is supposed to serve as an orientational map
for quality management that can be used to identify aspects of information quality to be
monitored and assessed by available methods and mechanisms and also indicate gaps in the
coverage of existing quality assurance processes. We will later refer to this model when we
introduce our automatic quality assessment methods in the chapters 5 and 6.

Similar to Wang and Strong, we distinguish between four categories of quality dimen-
sions. Following their rationale, we define a category of intrinsic quality and contextual
quality. While the former captures the internal characteristics of the information that is
expressed by an article, the latter focuses on its appropriateness for the audience, medium
and application. Instead of a generic category of representational quality, we account for
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the textual nature of Wikipedia with a dedicated writing quality category that includes lin-
guistics and stylistic properties. Finally, while the first three categories assess individual
articles in isolation, the fourth organizational category focuses on their integration within
the wider confines of Wikipedia. Figure 4.3 shows an overview of the model. In the follow-
ing, we give a short description of each dimension in the model.

4.4.1 Intrinsic Article Quality

Following Wang and Strong and their category of intrinsic data quality, intrinsic article
quality captures the internal characteristics of the information contained in an article and
is largely detached from its representation or application. Judging article quality along the
dimensions in this category demands the greatest level of knowledge about the article topic.

Verifiability: Originally defined as believability by Wang and Strong, we define
verifiability to assess how well the information represented is referenced and can thus
be verified. This both affects the authority and quality of any given sources as well as
the absolute number of sources contained in the article and the relative coverage of
the article content by references.

Accuracy: Refers to the factual correctness and the preciseness of an article.
Neutrality: A neutral article is not supposed to take particular sides and should provide
a balanced view on a subject. Issues regarding article neutrality are often discussed
under the term NPOV – the neutral point of view. Even though there is a general
distinction between neutrality and objectivity, i.e. an article can be objectively written
while not being neutral – we subsume both concepts under the same dimension.

Completeness: The dimension completeness is strongly related to the amount of
information on the contextual level. However, in contrast to the amount of
information, completeness is not concerned with the verbosity of the article, but
rather with how well the article topic is covered. This dimension is also present in the
user rating dataset described in section 4.3. However, in this dataset, completeness
scores mainly correlate with the article length, which is an important factor but is by
no means sufficient to rate the quality along this dimension reliably. Judgments along
this dimension demand extensive knowledge of the subject area in order to identify
coverage gaps.

Coherence: Describes the internal consistency of the information. Coherent texts
exhibit a “continuity of senses” (de Beaugrande and Dressler, 1981, p. 84) meaning that
concepts and arguments must be logically connected in order for the recipient to be
able to make sense of it as a whole. Coherence is strongly related to cohesion (see
below), which captures the linguistic aspects of coherence (Halliday and Hasan, 1976).

Currency: Captures how up to date the information is, i.e. whether the article reflects
the current state of affairs and the current state of knowledge.
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Reputation: While the reputation of traditional publications is often associated with
the respective reputation of the author and the publisher, reputation in the Wikipedia
context is more concerned with the trustfulness of the sources from which the
information was taken. This dimension is strongly related to verifiability and captures
the quality of references rather than the article coverage with references.

4.4.2 Contextual Article Quality

The category of contextual article quality consists of dimensions that capture how well the
article fits into an encyclopedia and how well it satisfies the typical requirements of the au-
dience. First and foremost, the article needs to fill a knowledge gap within the encyclopedia
and concisely describe its subject on an appropriate level of detail.

Value-added: The added value of an encyclopedic article is mainly that it delivers
relevant and concise information that is most likely of interest for the typical reader
without repeating information that is already available somewhere else in the
encyclopedia. It is therefore also often described with the duality of
informativeness and redundancy (Stvilia et al., 2007, 2008).

Amount of information: Related to the dimension completeness , the amount of
information relates to an adequate level of verbosity of the article. An article should
be as verbose as necessary while being as brief as possible in order to fulfill all
requirements along the other quality dimensions.

Complexity: This dimension relates to the level of abstraction and level of detail at
which the topic of the article is described. It is strongly related to the dimension of
understandability, which covers the linguistic complexity of the article. The present
dimension rather captures the level of complexity at which the information is
presented.

Volatility: The volatility of an article is determined by the stability of its content.
Depending on the article topic, a certain level of constant revision is needed to fulfill
the requirements of the currency dimension. Apart from that, a high quality article
should not be subject to frequent larger revisions.

4.4.3 Article Writing Quality

In accordance with our previous description of writing quality, this category captures how
well an article text is developed and subsumes both linguistics and stylistic properties. Sim-
ilar to previous work on scientific journalism (Louis, 2013), the dimensions in this category
are loosely based on the six traits scoring rubric for informative texts (see discussion in
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section 4.2) with genre-specific adaptations and expansions for encyclopedic texts under
consideration of the Wikipedia Manual of Style.79

Development: Ideas expressed in the article have to be logically organized.
Structure: The article should be well structured according to the Wikipedia style
guidelines, use sectioning with meaningful headlines and paragraphs within the
sections.

Tone: Tone of the text should be suitable for a formal, informative text and neither be
too casual and intimate nor too stilted. It should be neutral and distant rather than
opinionated and engaging.

Word choice: The right choice of words involves the selection of an appropriate
register (in accordance with the tone dimension) and should account for precise and
natural sounding language. According to the requirements of the
understandability dimension, the use of technical terms should be limited to the
necessary minimum.

Fluency: The article should fluently read as a single text rather than represent a
collection of independent text snippets related to the same topic.

Conventions: The article has to maintain the conventions defined in the Wikipedia
Manual of Style regarding the aspects such as abbreviations, capitalization and
punctuation.

Understandability: Strongly related to the dimensions complexity and word choice ,
understandability captures linguistic aspects such as the syntactic complexity of the
text. It subsumes concepts of readability and reading ease, which have been discussed
in section 4.2

Cohesion: Cohesion refers to the linguistic aspects of the related dimension of
coherence and captures how well the sentences in a text hold together. Cohesion helps
to follow the argumentation in a text and is mainly reached with the help of
coreference chains, ellipsis, substitution, conjunction and lexical chains (Halliday and
Hasan, 1976).

Illustration: While the adequate illustration of a text with images, tables or graphs in
order to support the effective delivery of an article’s message is an extratextual aspect,
we still regard it as a trait of writing quality, since it creates a direct link between the
textual and the visual level. This aspect has recently also been incorporated in the six
traits rubric in form of an additional presentation category (Spandel, 2012).

Grammaticality and Spelling: This dimension refers to the previously discussed aspect
of language correctness and comprises the correct use of grammar and spelling. It
furthermore defines how language varieties and the use of non-standard language are
to be treated. For instance, the English Wikipedia allows both American English and

79http://en.wikipedia.org/wiki/WP:MOS
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British English to be used but requires each variety to be employed consistently
within a single article.

4.4.4 Organizational Article Quality

While the previously described categories of quality dimensions assess individual articles
in isolation, the organizational category is concerned with the integration of the articles
within the wider confines of Wikipedia.

Categorization: Wikipedia makes use of a comprehensive system of categories (see
section 3.2.2) which help to improve the navigation through the encyclopedia,
improve findability of the articles and help to automatically create topical lists and
overviews. Therefore, the correct and appropriate categorization of articles is vital for
the overall quality of Wikipedia.

Connectivity: Wikipedia articles are hypertext documents that strongly rely on their
interconnection with other articles. In order to avoid redundancy across Wikipedia
while maintaining the understandability of individual articles by providing all
necessary information, articles rather link to existing content than reproducing said
content. Therefore, when judging the quality of a single article, we have to consider its
integration within the wider scope of a superordinate WikiProject, the whole
Wikipedia, or even within the network of Wikimedia projects.

4.5 Chapter Summary

In this chapter, we discussed the concept of information quality and its application to infor-
mation quality management. We have established that information quality, in the broadest
sense, is a measure of the “fitness for use” of an information entity in a given application
scenario. While it is not possible to define a single universal model of information quality,
the models differ in how far they have been adapted to a particular application, medium or
user group. The notion of text quality refers to an information quality model for textually
represented information which particularly takes the writing quality of a text into account.
In order to construct an information quality model for Wikipedia articles, we reviewed the
existing mechanism for information quality management inWikipedia to gain an overview
how the concept of quality is interpreted in this community. Based on the widely accepted
generic IQ model by Wang and Strong (1996), we then described a hierarchical article qual-
ity model with 23 dimensions in four categories that particularly includes writing quality
as a major component. The role of this model in the remainder of this thesis is to provide
a means of orientation with respect to the aspects of quality that can be assessed with our
proposed methods and also show the gaps that remain.
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Chapter 5

Quality Flaw Detection
in Wikipedia Articles

“Conceal a flaw, and the world will imagine the worst.”

— Marcus Valerius Martial

A major part of information quality management is quality assessment, the goal of which
is to measure the quality of a given information entity according to a predefined qual-
ity model and standard. Often, the output of the quality assessment process is an abstract
score that gives no rationale regarding the concrete quality problems of the information en-
tity and therefore cannot directly contribute to improving the information. In this chapter,
we discuss our approach to quality flaw detection in Wikipedia, which identifies particu-
lar violations of a quality standard and therefore directly alleviates quality improvement
efforts.

We first give an overview of our motivation (section 5.1) and proceed with a formal
introduction of the concept of quality flaws and how they are manifested in Wikipedia
(section 5.2). We then introduce two corpora of Wikipedia articles with selected quality
problems and discuss the problem of selecting reliable documents while avoiding a topic
bias (section 5.3). Finally, we investigate how these corpora can be used to automatically
identify quality flaws in unseen articles (section 5.5) and examine a method to mine flaw
corrections from the article revision history (section 5.6). We conclude the chapter with a
discussion of the limitations in the predictability of cleanup flaws (section 5.7) and a sum-
mary of our findings (section 5.8).
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5.1 Motivation and Overview

In the previous chapter, we have introduced the concept of information quality and have
described the major aspects of information quality management in the context of a collabo-
ratively created encyclopedia. While quality assessment is an important part of information
quality management, it is not enough to just quantify the quality of an information entity
– i.e. a Wikipedia article – with an abstract quality score or by assigning coarse grained
labels identifying exceptional content. This, however, has been the central approach of
related work, which mainly focused on the prediction of good and featured article labels
(Wilkinson and Huberman, 2007; Lipka and Stein, 2010; Javanmardi and Lopes, 2010) or au-
tomatically assigning the community definedWikiProjects article quality grades (Hu et al.,
2007; Rassbach et al., 2007; Hasan Dalip et al., 2009; Han et al., 2011b,a). The main problem
with these approaches is that they do not provide any rationale why an article received a
particular quality rating, what the quality problems are and how to improve the article and
its quality. We argue that it is rather important to identify concrete quality problems in
order to inform theWikipedia community where their efforts are most needed and to assist
them in improving the overall quality of the encyclopedia.

In this chapter, we present an approach for identifying quality flaws in Wikipedia arti-
cles based on supervised text classification using cleanup templates assigned by Wikipedia
users as training data. Quality flaw detection constitutes a data-driven quality manage-
ment strategy directly aimed at assessing and improving the data. The task has first been
introduced by Anderka et al. (2012) who showed the feasibility of this approach for the ten
most frequent cleanup templates. In our experiments presented in this chapter, we first
extend the scope of the task to a wider set of more subtle quality flaws in the categories
neutrality and style , which have been identified as particularly important for article quality
by the Wikipedia community. We put particular emphasis on the data sampling techniques
employed, because an analysis of related work has shown that this task is prone to a severe
topic bias in the training data. This results in overly optimistic cross-validated classifica-
tion results that do not realistically reflect the classifier’s true performance. We therefore
present a technique to factor out the topic bias and extract reliable training instances from
the article revision history. We furthermore show how this approach can be extended to
mine quality flaw corrections from the history.
The main contributions of this chapter can be summarized as follows:

Contribution 5.1: We present a new corpus of neutrality and style flaws mined from the
English Wikipedia. The corpus contains both articles with the particular flaws and
documents that are reliable examples for articles without these flaws. (section 5.3)

Contribution 5.2: We identify that the quality flaw identification task based on cleanup
template detection is prone to a topic bias that results in unrealistically high
cross-validated evaluation results that do not reflect the classifier’s real performance on
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real world data. We furthermore propose a data sampling approach that is able to avoid
this bias in the training data. (section 5.3)

Contribution 5.3: We introduce FlawFinder – a system for supervised text classification
designed for quality flaw detection (section 5.4). While FlawFinder has been developed
particularly for the task described in this chapter, it can be applied to general text
classification problems and has been adapted as a general purpose text classification
framework that is described in appendix A.2

Contribution 5.4: We evaluate the performance of FlawFinder trained both on the corpora
used by related work and on the newly created neutrality and style corpora and perform a
detailed error analysis (section 5.5)

Contribution 5.5: We finally describe an approach for mining a corpus of quality flaw
corrections from Wikipedia’s article revision history. (section 5.6)

5.2 Quality Flaws in Wikipedia

While aggregated quality scores in Wikipedia, as they are represented by the featured and
good article labels or the WikiProject quality grades (see chapter 4.3), might separate high
quality articles from the rest, they fail at representing the intermediate range on the quality
scale and do not provide any rationale for the assignment of a particular label, i.e. they do
not identify the quality problems of an article. Quality problems can be defined as violations
of the quality guidelines, i.e. deviations from the quality standard in any quality dimensions.

Cleanup templates (see chapter 3.2.4), on the other hand, represent to-do markers as-
signed to articles by Wikipedia users in order to identify concrete shortcomings and defi-
ciencies of an article that have to be fixed by the community. These human-assigned labels
are therefore very good indicators for quality problems and thus a promising resource for
training quality flaw classifiers which can identify these problems in unseen articles. In
contrast to labels that simply assign a quality grade to an article, these atomic markers
identify single problems which directly give actionable feedback to the community with
respect to possible improvements. In turn, the aggregated set of all quality flaw markers
assigned to an article can also give an overall impression of its quality status.

In the following, we give an overview of the properties of quality flaws in Wikipedia,
formally define the task of quality flaw detection and analyze the reliability of cleanup
templates as quality flaw markers.

5.2.1 Properties of Quality Flaws in Wikipedia

The system of cleanup templates, like most organizational structures in Wikipedia, has
grown organically and is still subject to constant change. Rather than being a well-drafted
taxonomywhich corresponds to a quality model as the one whichwe defined in chapter 4, it
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is a loose agglomeration of tagswith different granularity and semantic overlaps. Therefore,
we distinguish between quality flaws on a conceptual level and the cleanup templates on
a concrete level with the templates being manifestations of the flaw. In the following, we
discuss the characteristics of both cleanup templates and flaws and examine how they are
related to each other.

5.2.1.1 Template Scope

Since quality flaws are represented by cleanup templates, it is important to consider the
scope of each template in order to locate its respective point of reference. We distinguish
between three different scopes. Inline-templates are placed directly in the text and refer to
the sentence or paragraph they are placed in. Templates with a section parameter refer to
the section they are placed in. The majority of templates, however, refer to a whole page.
Figure 5.1 shows examples for each scope.

The consideration of template scope is of particular importance for quality flaw recog-
nition problems. For example, the presence of a cleanup template which marks a single
section as not notable does not entail that the whole article is not notable. In other cases,
however, inline- or section-scope templates can be extended to the whole page. For in-
stance, if a section is marked to contain original research, this also holds true for the com-
plete article. In these cases, templates with a narrower scope help to locate the problems
in the tagged article.

5.2.1.2 Template Clusters

Since several cleanup templates might represent different manifestations of the same qual-
ity flaw, there is a 1 to n relationship between quality flaws and cleanup templates. For in-
stance, the templates pov-check80, pov81 and npov language82 can all be mapped to the same
flaw concerning the neutral point of view of an article.

The degree of similarity between two templates can differ. We can roughly distinguish
three cases:

(1) Two cleanup templates are fully synonymous if one template redirects to the other.
(2) Two cleanup templates are similar , if they capture the same problem type but differ

in scope or granularity/specificity.
(3) Two cleanup templates are unrelated , if they are neither synonymous nor similar.

Fully synonymous templates are easy to determine automatically by extracting the redi-
rects from and to the template information pages. The names of synonymous templates are
80The article has been nominated for a neutrality check
81The neutrality of the article is disputed
82The article contains a non-neutral style of writing
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Figure 5.1: Examples for cleanup templates with a) page-scope, b) section scope, c) inline scope
Source of example: http://en.wikipedia.org/wiki/index.php?oldid=583105148

usually spelling variations of each other (e.g. POV statement and Pov-statement) or consist
of synonymous terms for the same concept (e.g. POV statement and Neutrality disputed).

Similar templates are more difficult to identify. They describe the same quality prob-
lem on different levels of granularity or with a different scope. For example, the template
POV-title focuses solely on the neutrality of article titles while POV-section or POV indi-
cate neutrality problems in individual sections or whole articles respectively. Even though
the target problem of all of these templates is neutrality , it will depend on the application
whether they should all be aggregated under the same flaw. The similarity of one tem-
plate to others is often indicated by a reference in the “See also” section of the template
information page. However, these pages are not structured consistently, which makes au-
tomatic extraction of this information impossible. The template category system83 is also
not a reliable resource for determining template similarity, since it is merely a functional
classification of the templates rather than a well-drafted semantic taxonomy. Therefore, we
regard the selection of similar templates to be a manual task.

Finally, unrelated templates are identified by ruling out any similarity or synonymy
according to the definition above.

83http://en.wikipedia.org/wiki/Category:Wikipedia_maintenance_templates
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For each cluster, one template is defined as the nucleus which is used as the label for the
flaw that is represented by the cluster. We choose the template with the highest number of
synonyms as the nucleus. In cases of ties, i.e. multiple templates with the same number of
synonyms, we choose template with the most comprehensive template information page,
since a detailed description indicates a higher importance of the template.

5.2.1.3 Topical Restriction

Many cleanup templates have restrictions concerning the pages they may be applied to. A
hard restriction is the page type (or namespace) a template might be used in. For example,
some templates can only be used in articles while others can only be applied to discussion
pages. This is usually enforced by maintenance scripts running on the Wikimedia servers.

A soft restriction, on the other hand, are the topics of the articles a template can be used
in. Many cleanup templates can only be applied to articles from certain subject areas. An
example with a particularly obvious restriction is the template in-universe (see table 5.3),
which should only be applied to articles about fiction. This topical restriction is neither
explicitly defined nor automatically enforced, but it plays an important role in the quality
flaw recognition task, as the remainder of this paper will show.

While flaws merely concerning the structural or linguistic properties of an article are
less restricted to individual topics, they are still affected by a certain degree of topical pref-
erence . Many subject areas in Wikipedia are organized inWikiProjects 84, which have their
own ways of reviewing and ensuring quality within their topical scope. Depending on the
quality assurance processes established in a WikiProject, different importance is given to
individual types of flaws. Thus, the distribution of cleanup templates regarding structural
or grammatical flaws is also biased towards certain topics. We will henceforth subsume the
concept of topical preference under the term topical restriction.

5.2.2 Definition of the Quality Flaw Detection Task

Based on the above definition of quality flaws, we define the quality flaw detection task
similar85 to Anderka et al. (2012) as follows:

Given a sample of articles in which each article has been tagged with any
cleanup template τi from a specific template cluster Tf thus marking all arti-
cles in the sample with a quality flaw f , it has to be decided whether or not an
unseen article suffers from f .

84http://en.wikipedia.org/wiki/WP:PROJ
85Anderka et al. (2012) consider each flaw to be represented by a single cleanup template rather than by a
cluster of similar templates.
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Flaw κ F1

Advert .60 .80
Confusing .60 .80
Copy-edit .00 .50
Essay-like .60 .80
Globalize: .60 .80
In-universe .80 .90
Peacock .70 .84
POV .60 .80
Technical .90 .95
Tone .40 .70
Trivia .20 .60
Weasel .50 .74

Table 5.1: Agreement of human
annotator with gold standard.
The corpus for this small study
consist of 20 articles per flaw, half
of which are flawed.

We cast this task as a binary classification problem in which a classifier trained on a set of
articles that contain the quality flaw f (positive instances) and a set of articles that do not
contain f (negative instances) learns to identify unseen articles suffering from f . Therefore,
it is both necessary to provide reliable examples and counterexamples for flawed articles
in order to achieve a sufficiently high classification performance. However, no articles are
marked not to contain a particular quality flaw. Consequently, there is no straight forward
way to sample flawless articles for a given flaw f . We therefore propose an approach to
extract reliable positive and negative training instances from the article revision history in
section 5.3.2. On the data extractedwith this approach, we train individual binary classifiers
for each quality flaw. It is possible to combine these classifiers in an ensemble method in
order to achieve joint classification of multiple flaws (Fujino et al., 2008).

5.2.3 Reliability of Cleanup Templates as Quality Flaw Markers

Arazy and Kopak (2011) discuss that it is important to assess how well humans agree in
their quality judgments. This is even more the case when predicting quality flaws that are
represented bymultiple community-assigned labels. Our approach to quality flaw detection
inWikipedia is based on the assumption that cleanup templates are valid markers of quality
flaws. In order to test the reliability of these user assigned templates as quality flawmarkers,
we carried out an annotation study in which one human annotator was asked to perform
the binary flaw detection task manually. For this study, we selected the same set of quality
flaws that we define for the NSTYLE corpus described in section 5.3.4. For each flaw, the
human rater was provided with the description of the nucleus of the template cluster, which
we extracted from the respective template information page. We extracted the plain text
of 10 random flawed articles and 10 random untagged articles for each flaw and presented
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the texts to the annotator. The annotator had to decide for each flaw individually whether
a given text belonged to a flawed article or not. She was not informed about the ratio of
flawed to untagged articles.

Table 5.1 lists the chance corrected agreement between the human annotator and the
gold standard using Cohen’s κ (Carletta, 1996), which is commonly used to assess agree-
ment between two human raters. The metric is defined as

κ =
p0 − pc
1 − pc

where p0 refers to the observed agreement between the human rater and the gold standard
and pc refers to the chance agreement, which is 0.5 in all cases of this balanced sample cor-
pus. We furthermore report the corresponding F1 performance for the human predictions
against the gold standard defined as follows

F1 =
2 ⋅ true positives

2 ⋅ true positives + false negative + false positives
The templates copy-edit and trivia yielded the lowest performance in the study. Even

though copy-edit templates are assigned to whole articles, they refer to grammatical and
stylistic problems of relatively small portions of the text. That is, they mark local phe-
nomena rather than the overall state of an article. This increases the risk of overlooking
a problematic span of text, especially in longer articles. The trivia template, on the other
hand, designates sections that contain miscellaneous information that is not well integrated
in the article. Upon manual inspection, we found a wide range of possible manifestations of
this flaw ranging from an agglomeration of incoherent factoids to well-structured sections
that did not exactly match the focus of the article, which is the main reason for the low
agreement.

Even though this small scale study is not exhaustive, it gives a clear indication that the
scope of cleanup templates has to match the scope of the quality flaw. That is, if a flaw
only concerns a small portion of an article, it should be represented by inline- or section
scope templates rather than by an article scope template. This issue is not yet addressed in
this thesis as it focuses on article classification and thus on article-scope templates alone.
However, section 5.6 discusses first attempts towards sentence level classification using
cleanup templates. Section 5.7 furthermore considers the general limits of the predictability
of quality flaws in Wikipedia.

5.2.4 Coverage of the Article Quality Model by Cleanup Templates

While cleanup templates identify a wide range of quality flaws, not all dimensions defined
in the Wikipedia article quality model (see chapter 4.4) are equally well covered. Figure 5.2
gives an overview how well each dimension is represented. The classification is both based
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Figure 5.2: Dimensional coverage of the article quality model by cleanup templates. Green indicate
full coverage, yellow partial coverage and red denotes inadequate coverage of the dimension.

on the number of different templates that can be assigned to a specific dimension and how
much the particular templates are used. We therefore use the cleanup template catego-
rization provided on the Wikipedia cleanup template listing86 and manually assign to each
category all relevant quality dimensions (see appendix C). Given the number of templates
assigned to each quality dimension and the number of occurrences of these templates in
Wikipedia, we derive three levels of coverage – full , partial and inadequate – color coded
in green, yellow and red. The judgments have been made manually without assigning
absolute thresholds of necessary template assignments to each coverage level. Therefore,
this categorization is subjective. However, it gives an impression how well the individual
dimensions are covered by cleanup templates and for which quality aspects we have to
employ other means of assessment.

86http://en.wikipedia.org/wiki/WP:TC
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5.2.5 Quality Flaw Markers in Non-English Wikipedias

Even though this dissertation mainly focuses on the English language and the experiments
described in this chapter have been carried out on the English Wikipedia, the methodology
itself is language independent. However, in order for the approach to be applicable to a par-
ticular language other than English, the respective language edition of Wikipedia needs to
make use of a similar system of cleanup templates. It is not easy to exhaustively determine
how many of the 287 Wikipedia language versions make active use of cleanup templates
as part of their quality assurance process. According toWikidata (see chapter 3.7), 21 lan-
guage editions have a cleanup template overview page87 similar to the English Wikipedia,
while 18 Wikipedias have a cleanup template category88. When factoring out the overlap
between the two, we can assume that at least 31 wikis employ cleanup templates to mark
quality flaws.

The English Wikipedia, as the language version with the biggest community, has the
most comprehensive system of cleanup templates. However, especially the smaller Wiki-
pedias (e.g. Sinhalese, Orya, Khmer) tend to directly adapt the English system of cleanup
templates and therefore exhibit a sophisticated system of flaw markers. Due to the small
size of these wikis, the amount of available training data is nevertheless limited.

The German Wikipedia, the second largest language edition in terms of the number
of articles, employs a highly reduced set of cleanup templates. They follow the rationale
that a large number of tags cannot be handled consistently by a large number of untrained
communitymembers and that the reduction to a core selection of templateswill therefore be
the best solution. TheGermanWikipedia currently employs 10 templates in four categories.
The usage of these templates and the cleanup activities associated with it are centrally
monitored on the corresponding WikiProject page89.

5.3 Quality Flaw Corpora

In this section, we describe two corpora that we use for our quality flaw detection experi-
ments. TheCLEF corpus has been introduced byAnderka and Stein (2012) in theCompetition
on Quality Flaw Prediction in Wikipedia as part of the PAN lab at the 2012 Conference and
Labs of the Evaluation Forum (CLEF). It is based on the English Wikipedia and represents
the ten most common quality flaws.

In our experiments with the CLEF corpus, we found several aspects to negatively influ-
ence the reliability and performance of text classifiers trained on this dataset. We therefore

87http://www.wikidata.org/wiki/Q9136874
88http://www.wikidata.org/wiki/Q8219083
89http://de.wikipedia.org/wiki/WP:WPWB
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Flaw Description Training Test

Advert The article appears to be written like an advertisement and
should be rewritten from a neutral point of view.

1 109 2 000

Empty section The article has at least one section that is empty. 5 757 2 000
No footnotes The article includes a list of references, related reading or ex-

ternal links, but its sources remain unclear because it lacks
inline citations.

3 150 2 000

Notability The article does not meet the general notability guideline. 6 068 2 000
Original research The article may contain original research and should be im-

proved by verifying the claims made and adding references.
507 1 014

Orphan The article is an orphan, as no other articles link to it. 21 356 2 000
Primary sources The article relies on references to primary sources or sources

affiliated with the subject and does not contain sufficient cita-
tions from reliable and independent sources.

3 682 2 000

Refimprove The article needs additional citations for verification. 23 144 1 998
Unreferenced The article does not cite any references or sources. 37 572 2 000
Wikify The article needs to be wikified, i.e. internal and external links

should be added.
1 771 1 998

Untagged Article without any cleanup templates. 50 000 –

Table 5.2: Flaw definitions and numbers of training and test instances per flaw. The training sets
exclusively contain articles tagged with the respective flaw (except for untagged ). The test sets
contain a balanced number of flawed and untagged articles.

discuss these problems in detail and show how they affect machine learning algorithms in
real life scenarios.

Finally, we present the NSTYLE corpus, a topically balanced corpus of neutrality and
style flaws with reliable negative examples, i.e. documents without the respective flaws,
which we designed to solve the problems of the CLEF corpus. It furthermore represents
two classes of quality problems that are of particular high importance for the Wikipedia
community and are furthermore relevant for textual resources other than Wikipedia.

5.3.1 The CLEF Corpus

The CLEF corpus90 reflects the ten most frequently tagged quality flaws in Wikipedia and
consists of a training and a test set for each flaw. It is a subsample of the PAN-WQF-12
corpus91 and has been compiled for the 2012 Competition on Quality Flaw Prediction in
Wikipedia (Anderka and Stein, 2012). The training set consists of 104,116 articles extracted
from the English Wikipedia snapshot from January 4th, 2012 which are labeled with the
respective quality flaws. Furthermore, a set of 50,000 untagged articles is provided. While
it is not guaranteed that articles without cleanup tags do not have quality problems, the
assumption underlying this corpus is that they provide reasonable examples for articles
90Available under http://www.webis.de/research/events/pan-12/pan12-web/wikipedia-quality.html
91http://www.uni-weimar.de/en/media/chairs/webis/research/corpora/corpus-pan-wqf-12
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(a) one-class classification (b) two-class classification

Figure 5.3: Concept of one-class classification according to Tax (2001, pp. 4,14). One-class classifiers
separate all given labeled instances from any outliers, while two-class classifiers separate the two
differently labeled classes.

without quality flaws. The test set contains a balanced number of flawed and untagged
articles and has a total size of 19,010 documents. Among the untagged articles in the test
corpus, 10% are featured articles.

It has to be noted that each flaw in the CLEF corpus is represented by only a single
template. Similar templates have not been aggregated to flaw clusters as we suggested in
section 5.2.1. We implemented this approach for the NSTYLE corpus that is introduced in
section 5.3.4.

Table 5.2 shows the definitions of all flaws in the CLEF corpus as they are displayed on
the template information pages and lists the numbers of articles for each flaw in respec-
tive training and test set. All articles are provided as plain text in the original MediaWiki
markup. In the test set, the cleanup templates representing the quality flaw of the respec-
tive class have been removed from the markup, but have been made available as ground
truth in a separate file.

5.3.2 Reliability of Training Instances

A central problem of the quality flaw recognition approach based on cleanup template pre-
diction is the fact that no articles are tagged to not contain a particular quality problem. In
other words, there are no explicit textual or formal indicators that can be used to retrieve
counterexamples for flawed articles. However, the majority of supervised machine learning
algorithms for classification problems are two- or multi-class approaches that need both
positive and negative examples for learning a decision boundary that is supported from
both sides by example instances (Tax, 2001). So far, two approaches have been proposed by
related work to circumvent this problem.
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One-Class Classification Anderka et al. (2012) tackle the problem with a one-class clas-
sifier that is trained on the positive instances alone thus eradicating the need for negative
instances in the training phase (see figure 5.3). Tax (2001) describes three main approaches
to one-class classification, i.e. density estimation, boundary methods and reconstruction
methods. For all of these approaches, the learner has to be able to measure the distance
of any unknown document to the given training examples and has to learn a threshold on
the distance for deciding the class assignment. Anderka et al. use a combination of den-
sity estimation and class probability estimation based on the cleanup template frequency
in Wikipedia. For evaluating the performance of this classifier in terms of precision, how-
ever, it is necessary to provide a set of representative examples that can serve as outliers for
the given target class. This closely resembles the initial problem of non-existing negative
examples. The authors circumvent the issue by evaluating their classifiers on a set of ran-
dom untagged instances and a set of featured articles and claim that the actual performance
of detecting the quality flaws lies between the two. Therefore, we argue that the original
problem is only partially solved by the one-class classification approach.

PU Learning Ferretti et al. (2012) follow a two step classification approach designed for
learning from positive examples and unlabeled data (PU learning). The idea is to employ
different classifiers for preselecting suitable training instances and for performing the actual
predictions (Liu et al., 2002, 2003). In the first phase, the authors use a Naive Bayes classifier
trained on positive instances and random untagged articles to pre-classify the data. The
assumption behind that is that the negatives identified in the pre-classification step will be
better counterexamples than the initially selected random untagged articles. In the second
phase, they use these negatives together with the original set of positive instances to train a
Support Vector Machine that produces the final predictions. Figure 5.4 shows a schematic
overview of the concept. Even though the Naive Bayes classifier is supposed to identify
reliable negatives, the authors found no significant improvement over a random selection of
negative instances. This, however, effectively renders the PU learning approach redundant.

Since none of the approaches to circumvent the need for negative examples have been
effective, we argue that we need to develop a dedicated method for identifying reliable
negatives to perform the quality flaw prediction task efficiently and reliably. Our solution to
this problem is described in section 5.3.4, where we discuss the construction of our NSTYLE
corpus.

5.3.3 Topic Bias

In addition to the reliability of the training instances, another central aspect has to be con-
sidered when compiling training corpora for quality flaw classifiers. In section 5.2.1, we
discussed that cleanup templates can be topically restricted, i.e. they occur exclusively or
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Figure 5.4: Concept of PU learning
according to Ferretti et al. (2012, p. 4).
Classifier 1 identifies reliable nega-
tives (RNs) among the untagged arti-
cles U, which are then used as input
for classifier 2. Both classifiers use
the same positive instances P.

more likely in articles from particular subject areas. In return, sets of articles that are
tagged with the same cleanup template will be biased towards these topics. If this bias is
not considered when sampling the negative instances, the positive and the negative set will
substantially differ in topic thus resulting in a topically biased dataset. As a consequence, a
classifier intended for quality flaw detection is likely to degenerate to a topic classifier and
show unrealistically high cross-validated performance in evaluation.

Topic bias is a known problem in text classification. Mikros andArgiri (2007) investigate
the topic influence in authorship attribution. They found that even simple stylometric fea-
tures, such as sentence and token length, readability measures or word length distributions
show considerable correlations with the topic. They argue that many features that were
largely considered to be topic neutral are in fact topic-dependent variables. Consequently,
results obtained on multitopic corpora are prone to be biased by the correlation of authors
with specific topics. Therefore, several authors introduce topic-controlled corpora for ap-
plications such as author identification (Koppel and Schler, 2003; Luyckx and Daelemans,
2004) or genre detection (Finn and Kushmerick, 2006).

Brooke and Hirst (2011) measured the topic bias in the International Corpus of Learner
English and found that it causes a substantial skew in classifiers for native language de-
tection. In accordance with Mikros and Argiri, the authors found that even non-lexicalized
meta features, such as vocabulary size or length statistics, depend on topics and cause cross-
validated performance evaluations to be unrealistically high. In a practical setting, these
biased classifiers hardly exceed chance performance.

In the context of Wikipedia quality flaw detection, figure 5.5a illustrates the problem
that arises from topic agnostic sampling as exhibited by the one-class approach and the PI
learning approach92 described earlier. Both approaches sample random negative instances
Arnd for any given set of flawed articles Af from a set of untagged articles Au without taking
into account the topical restriction for the given flaw f . The articles that conform to the
topical restriction of f are indicated by the set Atopic that contains articles with a topic

92Even though the PU learning approach selects negative instances with a meta classifier rather than per-
forming random sampling, the result is similar to the random sampling approach as we discussed before.
Thus, without loss of generality, we consider the subsample to be random.
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(a) Random negatives (b) Reliable negatives

Figure 5.5: Sampling of negative instances for a given set of flawed articles (Af ). Random negatives
(Arnd ) are sampled from articles without any cleanup templates (Au). Reliable negatives (Arel) are
sampled from the set of articles (Atopic) with the same topic distribution as Af

distribution similar to the flawed articles in Af . A flaw that is restricted to a very narrow
set of topics, such as in-universe, consequently has a small Atopic while flaws with a topical
preference rather than a topical restriction will have a larger Atopic . In any case, the topic
distribution of Atopic is clearly skewed compared to the near random topic distribution of
Au. Consequently, the topical differences between Arnd and Af are a predominant feature
for a classifier to pick up on.

In order to factor out the article topics as amajor characteristic for distinguishing flawed
articles from the set of outliers, reliable negative instances Arel have to be sampled from the
restricted topic set Atopic (see figure 5.5b). This will avoid the systematic bias and result
in a more realistic performance evaluation. The fact that it is much easier to determine
a decision boundary between Af and Arnd than between Af and Arel explains why topic
agnostic classifiers show unrealistically high cross-validated results in the evaluation.

In the following section, we describe the NSTYLE corpus in which the topic distributions
of negative and positive instances are controlled by dedicated sampling techniques. We
furthermore describe our approach how to extract reliable negative and positive training
instances from the Wikipedia article revision history.

5.3.4 The NSTYLE Corpus

With the NSTYLE corpus, we pursue two separate goals. First, we extend the scope of the
quality flaw detection experiments from the tenmost frequent flaws to a newly compiled set
of 12 flaws from the categories neutrality and style . Neutrality is one of the most discussed
aspects in the Wikipedia community and directly anchored in the five pillars of Wikipedia
(see chapter 3.1). Stylistic aspects, on the other hand, are mainly situated in the writing
quality layer of our article quality model and largely underrepresented by existing quality
assessment procedures (see section 5.2.4). We therefore chose these two categories to show
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that the quality flaw detection approach does not only work for the most frequent flaw
types, which was the selection criterion for the flaws in the CLEF corpus. Second, we aim at
demonstrating how the influence of the topic bias that was discussed earlier in this section
can be factored out by sampling reliable training instances from the revision history.

5.3.4.1 Selection of Flawed Articles

We start with selecting all cleanup templates listed under the categories neutrality and style
of writing in the topology of cleanup templates shown in appendix C. Each of the selected
templates serves as the nucleus of a template cluster that potentially represents a qual-
ity flaw. To each cluster, we add all templates that are synonymous to the nucleus. The
synonyms are listed in the template description under redirects or shortcuts . Then we itera-
tively add all synonyms of the newly added template until no more redirects can be found.
Furthermore, we manually inspect the lists of similar templates in the see also sections of
the template descriptions and include all templates that refer to the same concept as the
other templates in the cluster. As mentioned earlier, this is a subjective task and largely
depends on the desired granularity of the flaw definitions. We finally merge semantically
similar template clusters to avoid too fine grained flaw distinctions.

As a result, we obtain a total number of 94 template clusters representing 60 style flaws
and 34 neutrality flaws. From each of these clusters, we remove templates with inline or
section scope due to the reasons outlined in section 5.2.1.1. We also remove all templates
that are restricted to pages other than articles (e.g. discussion or user pages). We use the
JWPL (see chapter 3.6.2) to extract all articles marked with the selected templates. We only
regard flaws with at least 500 affected articles in the snapshot of the English Wikipedia
from January 4, 2012.

Table 5.3 shows an overview of the flaws represented in the NSTYLE corpus. For each
flaw, the nucleus of the template cluster is provided along with a description, the number
of affected articles, and the size of the template cluster.

5.3.4.2 Extraction of Reliable Instances

As we have argued in section 5.3.2, the extraction of documents that do or do not exhibit
a particular quality flaw is an important and non-trivial task. The quality of a machine
learning classifier will largely depend on the quality of the data it is trained on and therefore
on the success of the data sampling process. In the following, we present our approach to
extracting reliable negative training instances that conform with the topical restrictions of
the cleanup templates.

Reliable Negatives. Without loss of generality, we assume that an article, from which
a cleanup template τ ∈ Tf is deleted at a point in time dτ , no longer suffers from flaw
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Flaw Description Articles Cluster Size
Adverta The article appears to be written like an advertisement and

is thus not neutral
7,332 2

POV The neutrality of this article is disputed 5,086 10
Globalize The article may not represent a worldwide view of the sub-

ject
1,609 1

Peacock The article may contain wording that merely promotes the
subject without imparting verifiable information

1,195 1N
eu

tr
al
ity

Weasel The article contains vague phrasing that often accompanies
biased or unverifiable information

704 4

Tone The tone of the article is not encyclopedic according to the
Wikipedia Manual of Style

4,563 6

In-universe The article describes a work or element of fiction in a pri-
marily in-universe styleb

2,227 1

Copy-edit The article requires copy editing for grammar, style, cohe-
sion, tone, or spelling

1,954 6

Trivia Contains lists of miscellaneous information 1,282 2
Essay-like The article is written like a personal reflection or essay 1,244 1
Confusing The article may be confusing or unclear to readers 1,084 1

St
yl
e

Technical The article may be too technical for most readers to under-
stand

690 2

a Also represented in the CLEF corpus.
b According to the Wikipedia Manual of Style, an in-universe perspective describes the article subject
matter from the perspective of characters within a fictional universe as if it were real.

Table 5.3: NSTYLE corpus of neutrality and style flaws. The cluster size refers to the number of
templates used to represent the particular flaw (see section 5.2.1)

f at that point in time. Thus, the revision rdτ is a reliable negative instance for the flaw f .
Additionally, since the article was once tagged with τ ∈ Tf , it belongs to the same restricted
topic set Atopic as the positive instances for flaw f .

We use the Apache Hadoop93 framework andWikiHadoop94, an input format for Wiki-
pedia XML dumps, for crawling the whole revision history of the English Wikipedia on a
compute cluster to create an index of reliable negative instances for all templates found in
the dataset (see figure 5.6). WikiHadoop allows each Hadoop mapper to receive adjacent
revision pairs, which makes it possible to compare the changes made from one revision to
the next. For every template τ found in the dataset, we extract all pairs of adjacent revisions
(rdτ−1, rdτ ), in which the first revision contains τ and the second one does not contain τ , and
store them in an aggregated index. From this index, we can retrieve all reliable negative
instances for any template.

For extracting the final set of reliable negative instances for a given flaw f , we retrieve
from the index all revisions for each template in the template cluster of f . In other words,

93http://hadoop.apache.org
94https://github.com/whym/wikihadoop

81

http://hadoop.apache.org
https://github.com/whym/wikihadoop


Chapter 5. Quality Flaw Detection in Wikipedia Articles

Figure 5.6: Distributed extraction of reliable negative training instances fromWikipedia XML dump
on a compute cluster using Hadoop

we retrieve all revisions for any τ ∈ Tf . Since there are occasions in which a template is re-
placed by another template from the same cluster rather than being deleted, we ensure that
rdτ does not contain any other template from cluster Tf before we finally add the revision
to the set of reliable negatives for flaw f .

The main effort of this approach lies in the one time creation of the index as described
above. Creating the actual sets of reliable revisions for individual flaws from this index can
be achieved with little work. The performance of the index creation process could further
be improved by employing more than one reducer in the MapReduce process. However, in
this case, the output of all reducers has to be aggregated again to obtain a single index in
the end. We did not attempt this in our experiments. Table 5.5 lists the number of reliable
negative instances extracted for each flaw.

Reliable Positives. Even though the issue of finding reliable negative instance is the most
immanent, since we do not have any labels indicating articles without a particular problem,
it is also important to ensure the quality of the positive instances for whichwe do have these
labels.

The main assumption of the quality flaw detection approach is that Wikipedia articles
exhibit a particular quality problem as long as they are marked with the corresponding
cleanup template and that the cleanup template is removed as soon as the quality problem is
solved. However, as amanual inspection of our corpora has shown, it is possible that quality
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problems are solved while the corresponding cleanup templates remain in the article. A
scenario for this could be that a user who recently improved an article might first consult
the Talk page of the article (see chapter 6) to confirm whether they sufficiently solved the
problem before removing the tag. Depending on the discussion activity of the particular
article, this could take several days. As a consequence, there is a period of time in which
the article carries a cleanup template without exhibiting the corresponding flaw. These
instances constitute false positives in the training data.

In order to solve this problem, we have to identify reliable positive instances. Similarly
to the approach described above, we backtrack the revision history of every article with a
particular cleanup template until we find the revision in which the template first appeared.
This revision is regarded as the reliable positive instance.

For our experiments, we only consider pages as positive instances that are marked with
a flaw at the time the Wikipedia dump was created. For these pages, we extract the reliable
revision as described above. In order to increase the amount of available training data, it is
possible to extract additional instances from the revision history to include pages that once
suffered from a particular flaw.

Having defined the concepts of reliable negatives and reliable positives, we nowdescribe
the three different dataset configurations that we compile from the NSTYLE corpus for our
machine learning experiments. The NSTYLE-BASE configuration resembles the sampling
methodology of the CLEF corpus and contains the latest revisions of any tagged article
as positive instances and random untagged articles as negative instances. The NSTYLE-
RELP configuration makes use of the reliable sampling technique for positive instance as
described above. As negative instances we again sample random untagged articles. Fi-
nally, for the NSTYLE-RELALL configuration, we sample both reliable positives and reliable
negatives.

5.3.4.3 Measuring the Topic Bias

As we have argued in section 5.3.3, articles with the same cleanup templates tend to share
particular subject areas or topics and can easily be separated from random articles. The
more restricted the set of topics of a particular set of positive instances is, the easier it can
be separated from random articles with simple lexical features. This topic bias, however,
limits the usefulness of the dataset for quality flaw detection experiments, since we are not
interested in topic clustering but in identifying quality flaws along with the most descrip-
tive features for these flaws. We therefore first describe a method to quantify the topical
similarity between two sets of articles and then measure the similarities between the train-
ing sets for the NSTYLE-BASE and the NSTYLE-RELALL configuration in order to show that
the topic bias is largely eradicated in the latter approach.

In Wikipedia, the topic of an article is captured by the categories assigned to it. In order
to compare two sets of articles with respect to their topical similarity, we represent each
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Table 5.4: Cosine similarity scores be-
tween the category frequency vectors
of the flawed article sets and the re-
spective random or reliable negatives

Cosine Similarity
Flaw (Af ,Arel) (Af ,Arnd )

Advert .996 .118
Confusing .996 .084
Copy-edit .993 .197
Essay-like .996 .132
Globalize .992 .023
In-universe .996 .014
Peacock .995 .310
POV .994 .252
Technical .995 .018
Tone .996 .228
Trivia .980 .184
Weasel .976 .252

article set as a category frequency vector. Formally, we calculate for each set the vector
C⃗ = (wc1,wc2,… ,wcn) with wci being the weight of category ci, i.e. the number of times it
occurs in the set, and n being the total number of categories in Wikipedia. We can then
estimate the topical similarity of two article sets by calculating the cosine similarity of their
category frequency vectors C⃗1 B A and C⃗2 B B as

sim(A,B) =
A ⋅ B
‖A‖ ‖B‖

=

n
∑
i=1

Ai × Bi



n
∑
i=1
(Ai)2 ×



n
∑
i=1
(Bi)2

Table 5.4 gives an overview of the similarity scores between each positive training set and
the corresponding reliable negative set as well as between each positive set and a random
set of untagged articles.

We can see that the topics of articles in the positive training sets are highly similar to
the topics of the corresponding reliable negative articles while they show little similarity
to the articles in the random set. This implies that the systematic bias introduced by the
topical restriction has largely been eradicated by our approach.

Individual flaws have differently strong topical restrictions. The strength of this restric-
tion depends on the size of Atopic , i.e. the set of articles with the same topic distribution as
the flawed articles. In other words, a flaw such as in-universe is restricted to a very nar-
row selection of articles, while a flaw such as copy edit can be applied to most articles and
rather shows a topical preference due to reasons outlined in section 5.2.1. It is therefore to
be expected that flaws with a small Atopic are more prone to the topic bias.

84



5.4. A System for Quality Flaw Detection

5.3.4.4 Corpus Analysis

We close this section with an overview of the properties of the NSTYLE corpus. Table 5.5
lists the number of reliable positive and negative instances for each flaw type. It further-
more shows the total number of tagged revisions in the snapshot of the English Wikipedia
from January 4, 2012 and the date of the first appearance of each flaw. The latter has been
computed by identifying the oldest article revision in the Wikipedia dump that contained
any cleanup template from the template cluster of the respective flaw.

While the flaws Technical andWeasel hardly exceed the minimum of 500 affected articles
that we defined in the sampling process, the majority of flaws exhibit between 1, 000 and
2, 000 affected articles. The most frequently observed flaws, Advert, POV and Tone, occur
nearly 17,000 times – more often than all the other nine flaws combined.

The number of reliable negatives differs more substantially across all flaw types depend-
ing on how actively a particular set of cleanup templates has been used, how fast the flaw
can be corrected and how long the type of flaw already exists in the English Wikipedia.
While the number of positive instances indicates the current95 articles that suffer from this
flaw, the number of negatives indicates the total number of times the particular flaw was
corrected. We can therefore see the ratio of positives to negatives as a rough proxy for
how easy, and potentially how fast, a particular flaw can be corrected. For instance, 5, 086
articles were marked with the flaw POV at the time the Wikipedia dump was created while
cleanup templates belonging to the POV template cluster have been removed from 105, 066
articles in the past. In contrast, the flaw Advert occurred 7, 332 times at time of dump cre-
ation, but was only corrected 39, 133 times before. Even though the Advert flaw appeared
for the first time roughly one year after the POV flaw, these numbers allow the assumption
that POV flaws are corrected faster than Advert flaws. Anderka (2013) performed an analy-
sis of average correction times for cleanup templates without considering their aggregation
to template clusters. He found that the average time needed to fix an article scope template
is 176 days.

We provide descriptive statistics for the flawed articles in the NSTYLE corpus in fig-
ure 5.7 including an overview of the article age, number of unique contributors, number of
revisions and the article length in tokens. This should give an impression of the properties
of the articles in the corpus rather than characterize the individual quality flaws.

5.4 A System for Quality Flaw Detection

In this section, we first describe the architecture and setup of FlawFinder, our quality flaw
prediction system, and then provide an overview of the features used to capture quality
flaws. In the following section, we furthermore proceed with a description of our experi-

95At the point in time when the Wikipedia dump was created.
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Figure 5.7: Descriptive statistics for the flawed articles in the NSTYLE corpus. The article age is
displayed on a linear scale while the other properties are plotted on a logarithmic scale.
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Flaw Positives Negatives Total Revisions First Appearance

Advert 7,332 39,133 627,844 2005-06-06
Confusing 1,084 6,225 208,296 2005-03-20
Copy-edit 1,954 2,878 168,423 2004-12-30
Essay-like 1,244 3,898 164,243 2007-04-23
Globalize 1,609 8,196 439,264 2005-09-08
In-universe 2,227 5,270 332,159 2006-06-20
Peacock 1,195 7,022 169,199 2006-02-19
POV 5,086 105,066 2,442,626 2004-05-31
Technical 690 2,056 77,518 2005-02-25
Tone 4,563 20,166 948,227 2005-01-01
Trivia 1,282 70,304 2,601,217 2005-04-13
Weasel 704 12,710 397,238 2005-10-07

Table 5.5: This table lists the number of positive and negative instances per quality flaw in the
NSTYLE corpus. The column total revisions furthermore lists the number of revisions in the Wiki-
pedia snapshot from January 4, 2012 that are tagged with any cleanup template from the template
cluster of the respective flaw. The first appearance refers to the timestamp of the oldest article
revision in the dump that contains a template from the respective cluster.

ments both on the CLEF corpus96 and the NSTYLE corpus, followed by a detailed evaluation
and error analysis.

5.4.1 System Architecture

FlawFinder has been implemented as a modular and highly flexible text classification sys-
tem based on the Unstructured Information Management Architecture (UIMA) (Ferrucci
and Lally, 2004). Even though FlawFinder has been developed to predict quality flaws in
unseen texts, its basic design can be used for generic text classification tasks. In fact, the
system has been further developed into a generic system for supervised learning on tex-
tual data and made publicly available as the DKPro Text Classification Framework (DKPro
TC) on Google Code (Daxenberger et al., 2014). This general purpose framework is further
described in appendix A.2.

The component software architecture of UIMA enables applications that implement this
framework to be decomposed into reusable components that can be arranged into process-
ing pipelines. Within these processing pipelines, the documents are passed on as a common
analysis structure (CAS) that can be consumed by every downstream component. These
components do not alter the document directly, which remains immutable throughout the

96Since the CLEF corpus does not define template clusters, we regard the provided cleanup template to repre-
sent a single-element cluster. Thus, the same task definition can be used for this dataset.
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Figure 5.8: High-level system architecture of the FlawFinder

process, but any analysis output or generated information is rather stored in the CAS as a
standoff annotation.

For additional flexibility and modularity, we employ the DKPro Lab (Eckart de Castilho
and Gurevych, 2011) as a runtime environment for FlawFinder. The DKPro Lab is a light-
weight framework that allows to combine independent NLP pipelines into one integrated
and highly configurable task-based system. Each task is a self-sufficient processing unit
containing a single UIMA pipeline and is responsible for its own data management. Con-
figuration parameters can be injected into each task, whereas the results of the task with
each configuration are stored and re-used whenever possible. Furthermore, it is possible
to attach reports to each task in order to monitor, summarize or post-process the interme-
diate task output or final experiment results. The main advantage of the DKPro Lab is its
parameter sweeping functionality. That is, by providing value ranges for each parameter
an experiment depends on, the DKPro lab handles the parameter combinations that have
to run and reuses the intermediate output that has already been calculated in an earlier
configuration.

Overall, FlawFinder consists of five main components, a corpus reader, a linguistic pre-
processing engine, a feature extraction unit, a module for training and evaluating classifi-
cation models, and a report writer.

88



5.4. A System for Quality Flaw Detection

Corpus Reader. FlawFinder has been designed as a binary, single label text classification
system. That is, a single run of the system always focuses on an individual flaw f and
learns how to determine whether an article suffers from this flaw. Thus, the corpus reader
needs to provide the corresponding training instances that are marked with f , i.e. positive
instances, and instances that do not exhibit f , i.e. negative instances.

For the sake of flexibility, our corpora do not consist of full text but merely of IDs linking
to the corresponding articles or article revisions in a preprocessedWikipedia database. The
database is created and accessed with JWPL (section 3.6.2), while access to the revision
history is provided by the Wikipedia Revision Toolkit (see appendix A.1). This way, we are
able to obtain any available metadata later on without having to decide in advance about
what information to include in the corpora and how to structure the data.

The corpus readers are fed with lists of IDs that have been selected with the sampling
techniques described in section 5.3. Depending on the configuration of the experiment,
these IDs either refer to articles or particular article revisions (reliable training instances).
Each experiment consists of two sets of IDs containing references to flawed and flawless
articles respectively. The reader loads the articles from the database into the processing
pipeline, marks them with the flaw label and any necessary credentials for accessing the
article in the database. This way, any downstream component that merely requires the
article text can directly work on the document that passes through the pipeline while any
component demanding additional information from the database, such as the number of
pages linking to the particular article, can access this information later on (see figure 5.8).

Linguistic Preprocessing. Themain goal of the linguistic preprocessing module is to pre-
pare the documents for later processing by the feature extractors. It uses NLP components
from DKPro Core (Gurevych et al., 2007) for sentence splitting, tokenization, stop word an-
notation and named entity recognition and can be extended with additional components
depending on the requirements of the feature extractors. We furthermore use the SWEBLE
parser (Dohrn and Riehle, 2011a) for parsing the wiki markup and creating a Wikitext Ob-
ject Model (WOM) representation of the article (Dohrn and Riehle, 2011b). This WOM is an
abstract syntax tree that serves the same purpose as a document object model (DOM) for an
HTML document. It can be used to query the content of an article in a structured manner.

Feature Extraction. The feature extraction module has been implemented using ClearTK
(Ogren et al., 2008), a UIMA-based framework for developing statistical NLP components.
It offers interfaces for creating feature extractors that can be used independently from the
utilized machine learning algorithm. Even though the extractors are UIMA components
and thus can consume annotations created by the preprocessing module, they do not store
their output as annotation in the CAS. They rather pass the extracted features to a central
feature store which is maintained by the ClearTK framework. When the extraction process
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is finished for thewhole document collection, the contents of the feature store are converted
into the particular format that is required by the machine learning components used in
the setup. This decoupling of feature extraction mechanics and machine learning specific
formatting makes it possible to create a highly configurable and modular feature extraction
pipeline without imparting restrictions on the downstream components for training and
classification.

Machine Learning. For training the classifiers and evaluating their performance, the ma-
chine learning module employs two different machine learning toolkits. For the experi-
ments on the CLEF corpus we use Mallet, the Machine Learning for Language Toolkit (Mc-
Callum, 2002), since it offers a small collection of widely used text classification algorithms
and is directly supported by the ClearTK framework. For the experiments in the NSTYLE
corpus, we employ Weka (Hall et al., 2009), a Java-based data mining toolkit that provides
a larger selection of machine learning algorithms.

Reporting. The reporting module gathers information from the other tasks and generates
both individual, detailed reports for each experiment configuration and an overall report
with a summary of the results of all configuration runs in a particular setup. This makes
it possible to easily compare the performance of different classifiers and classification pa-
rameters.

5.4.2 Features

In order to capture the ten quality flaws represented in the CLEF corpus, we initially defined
a set of 29 feature types that – according to a manual inspection of flawed articles and
according to the flaw definitions – most likely indicate the presence or absence of any of
the selected quality flaws. Consequently, these features are very specific to the flaws they
are supposed to predict.

For the experiments on the NSTYLE corpus, we aimed at finding universal features that
indicate style and neutrality issues rather than tailoring particular features to detect sin-
gle flaw types. Furthermore, in order to gain insights how individual feature categories
perform on detecting style and neutrality flaws, we grouped the features into four feature
sets. NSTYLE-NONGRAM excludes all lexical features while NSTYLE-NGRAM is restricted to
lexical features. NSTYLE-NOWIKI excludes all wiki-specific features such as markup, link
structures or categories. We compiled this set in order to identify textual characteristics
that can be transferred to texts other thanWikipedia articles. Finally NSTYLE-ALL includes
all features relevant for the NSTYLE corpus without any additional restrictions.
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In the remainder of this section, we describe the features used in the CLEF and NSTYLE
experiments. An overview of all features and how they are combined in the classification
experiments is shown in table 5.6.

Structural Features are supposed to capture basic structural properties and surface char-
acteristics of the Wikipedia articles. As described in the system architecture, we use the
SWEBLE parser to create a Wikitext Object Model (WOM) of each page. From this model,
we extract all article sections along with their headers. We use the number of sections,
the mean length of the section texts and the number of empty sections as features. Fur-
thermore, we extract a plain text representation without wiki markup from the WOM and
calculate the ratio of markup to plain text as a fourth surface feature.

Reference Features capture aspects regarding the use of citations in the article. There are
basically two types of references, footnote style references and bibliography style references.
Footnote style references are marked with <ref> …<\ref> tags directly in the text and are
automatically listed at the bottom of the page97. Bibliography style references are manually
listed at the end of the article, usually in the References section. They can either be created
as manually formatted list items or can be marked with cite or citation tags for automatic
reference formatting. First, we check whether manually created bibliography items exist
in the References section and how many elements it contains. Then we count the number
of all inline references in the article and determine their average number per sentence.
Finally, we determine the ratio of the number of all references to the length of the article.
Analogously to lists of references, it is possible to define lists of explanatory notes using the
{{notelist}} template. It is usually placed in the Notes section and gathers all occurrences
of explanatory notes which are defined within the text with efn templates. We extract this
information in the same way as the references.

Network Features reflect the connections of an article within the whole network ofWiki-
pedia articles and to external resources. Since the number of inbound links (i.e. the number
of times other articles link to a given article) cannot be determined by parsing the articles
in the provided corpora alone, we use the respective information from our JWPL Wikipedia
database. When creating a new Wikipedia database from a Wikipedia data dump, JWPL
automatically parses the articles using the JWPL Wikitext parser and stores the link infor-
mation in the database. For each article, we determine the number of wiki-internal inbound
links, wiki-internal outbound links and links to resources outside of Wikipedia.

97Depending on the setup of the page, the references might appear in different sections such as References ,
Notes or Citations .
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Table 5.6: Feature sets
used in the experiments
on the CLEF and NSTYLE
corpora.
# indicates numbers of
instances

Category Feature type CL
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Lexical Article ngrams • • • •
Info to noise ratio • • •

Network # External links • • •
# Inlinks •
# Inlinks<3 •
No inlinks •
# Outlinks • • •
# Outlinks per sentence • •
# Language links • •

References Has reference list • • •
# References • • •
# References per sentence • • •
References to text ratio •
Has references •

Revision # Revisions • • •
# Unique contributors • • •
# Registered contributors •
Article age •

Structure # Empty sections • • •
Mean section size • • •
# Sections • • •
# Lists • •
Question rate • • •
Markup to text ratio •

Readability ARI • • •
Coleman-Liau • • •
Flesch • • •
Flesch-Kincaid • • •
Gunning Fog • • •
Lix • • •
SMOG-Grading • • •

Named Entity # Person entities • • • •
# Organization entities • • • •
# Location entities • • • •
# Person entities per sentence •
# Organization entities per sentence •
# Location entities per sentence •

Misc # Characters • • • •
# Sentences • • • •
# Tokens • • • •
Average sentence length • • •
Article lead length • •
Lead to article ratio • •
# Discussions • • •
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Named Entity Features capture the number of named entities in the article. We use the
Stanford Named Entity Recognizer (Finkel et al., 2005) using the 3-class model with distri-
butional similarity features98 for tagging all entities of the types Person, Organization and
Location. We use both the overall named entity counts and the average number of named
entities per sentence as features.

Revision-based Features are based on metadata derived from the article revision history.
We use the Wikipedia Revision Toolkit (WRT) (Ferschke et al., 2011) to determine the num-
ber of revisions for each article. Furthermore, we count the number of unique users that
edited the page in the past. Since this number also includes anonymous users, which might
be counted several times due to changing IP addresses, we additionally determine the num-
ber of unique registered users. Finally, we capture the age of the article in days. The WRT
is described in more detail in appendix A.1.

Lexical Features are extracted from the plain article text that we obtain from theWikitext
Object Model created by the SWEBLE parser. Any wiki markup is removed except for inter-
nal and external links. All links are replacedwith a generic EXPLICITLINK label. Furthermore,
we perform stopword filtering using the stopword list from the snowball stemmer99, which
we augmented with punctuation marks. We extract all token-unigrams, bigrams and tri-
grams from each article and disregard any ngrams with a frequency lower than 5 across the
corpus. This cutoff value was determined empirically during the parameter optimization
run. We found that a value of 5 was optimal for all flaws.

Readability Features measure the clarity of writing and the level of reading competency
needed to understand a text. Most of the prominent metrics rely on surface features that
consider average word and sentence length along with the number of syllables per sen-
tence. We use the metrics implemented in the readability package of DKProCore (Gurevych
et al., 2007) including the Flesch-Kincaid grade level metric (Kincaid et al., 1975), the Auto-
matic Readability Index (ARI) (Smith and Senter, 1967), the LIX index (Björnsson, 1968), the
Coleman-Liau index (Coleman and Liau, 1975), the Flesch reading ease test (Flesch, 1948),
the SMOG grade metric (McLaughlin, 1969) and the Gunning-Fog index (Gunning, 1969).

Other Features include character counts, token counts and sentence counts per article.
Furthermore, we measure the discussion activity by means of counting the number of indi-
vidual discussion topics on the Talk page associated with the article. According to Ferschke
et al. (2012a), we regard each titled section on the Talk page as a discussion topic. We refrain
from using lexical features from Talk pages, since the Talk page could explicitly discuss the

98http://nlp.stanford.edu/software/CRF-NER.shtml
99http://snowball.tartarus.org/algorithms/english/stop.txt
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cleanup tags that are supposed to be predicted. This information leak would thus lead to
biased results.

5.5 Experiments

In this section, we first describe the experiment setup on both corpora and howwe optimize
the experiment configuration followed by an evaluation of the classifier performance and
an error analysis.

5.5.1 Experiment Setup and Optimization

The experiments on the CLEF and the NSTYLE corpora have both been carried out with the
FlawFinder system using differentmachine learning toolkits for training and evaluating the
classifiers. In particular, we switched from the Mallet machine learning toolkit (McCallum,
2002) to Weka (Hall et al., 2009) due to its wider range of machine learning algorithms and
easier to use data format. This section outlines the setup of each experiment and how we
determined the best configuration for the final evaluation.

5.5.1.1 CLEF Experiment Setup

For the experiments on the CLEF corpus, we use two machine learning algorithms from
the Mallet machine learning toolkit (McCallum, 2002), a Naive Bayes classifier and C4.5
decision trees . For efficiently training the Naive Bayes classifier, we perform unsupervised
discretization of numeric features using equal interval binning as suggested byWitten et al.
(2011), since the algorithm does not cope well with real valued features and the Mallet
toolkit is not able to perform feature discretization automatically. The decision trees were
trained using adaptive boosting with 100 rounds and were limited to the depth of five due
to memory restrictions.

We experimentally derived the best configuration for each flaw in a parameter opti-
mization run , which consists of several training iterations on the same training subset us-
ing different parameters. To this end, we evaluate the performance of both algorithms for
each flaw on 10-fold cross validation using 500 positive and 500 negative instances from
the training set. We parameterize each run with the number of selected features (between
250 and 1,500), the use of a stop-word filter and the frequency cut-off for discarding rare
ngrams in order to obtain the best setting.

We use the Information Gain feature selection approach (Mitchell, 1997) to rank and
prune the feature space. Table 5.7 shows the result of the feature selection process for
each flaw and lists the selected features along with their feature utility scores. The scores
depict the discriminativeness of each feature for a given flaw and are the basis for the
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feature ranking we derived during training. This information sheds light on which types of
features work best to represent the individual flaws. A detailed evaluation of the classifier
performance along with an error analysis will be provided in section 5.5.2.

It is not surprising that the best indicators for structural flaws are the corresponding
structural properties, such as has empty section for Empty Section . For other flaws, the
feature ranking is more interesting. For Original Research , for instance, the best ranked
feature is the discussion activity. This suggests that the discussion content might also be
informative for identifying this flaw and that the Talk pages should be further exploited
for feature extraction. For the flaw Advert , the most discriminative non-lexical features
are links pointing to external resources. Taking into account the content to which these
external links point could further improve the classification performance. It has to be noted
that the utility scores cannot be directly compared across flaws. They are only significant
as indicators for the ranking within a given flaw. Lexical features are most effective for
the flaws Advert , Notability and Original Research , while the other flaws only show little
performance gain when adding ngrams to the feature sets. This is to be expected, since
structural flaws such as Empty Section orWikify are not expressed by the vocabulary but
by the article structure and the markup.

5.5.1.2 NSTYLE Experiment Setup

While the experiments on the NSTYLE corpus are based on the same system as the CLEF
experiments, we made minor adjustments to the experiment setup. Mainly, we replaced
the Mallet machine learning toolkit with Weka in order to gain access to a larger collection
of classification algorithms.

We furthermore adapted our feature selection approach to the two step strategy that
was able to improve the time efficiency of the parameter estimation process. We first filter
the ngrams according to their document frequency in the training corpus. We discard all
ngrams that occur in less than x% and more than y% of all documents. Several values for
x and y have been evaluated in parameter tuning experiments. The best results have been
achieved with x=2 and y=90. In a second step, similar to the CLEF setup, we apply the
Information Gain feature selection approach to the remaining set to determine the most
useful features.

As we have discussed in the corpus description, we employ three different dataset con-
figurations derived from the NSTYLE corpus. The NSTYLE-BASE configuration uses the
newest version of each flawed article as positive instances and a random set of untagged
articles as negative instances. TheNSTYLE-RELP configuration uses reliable positives, as de-
scribed in section 5.3.2, in combination with random outliers. Finally, the NSTYLE-RELALL
configuration employs reliable positives in combination with the respective reliable nega-
tives.

95



Chapter 5. Quality Flaw Detection in Wikipedia Articles

A
dv

er
t

Em
pt
y
Se

ct
io
n

N
ot
ab

ili
ty

O
rig

in
al

Re
se
ar
ch

Re
fim

pr
ov

e

U
nr

ef
er
en

ce
d

O
rp

ha
n

W
ik
ify

N
o
Fo

ot
no

te
s

Pr
im

ar
y
So

ur
ce

s

Selected features 1,500 500 250 250 250 1,000 1500 1,500 250 1,500
Classifier NB C45 NB NB NB C45 C45 NB C45 NB

Selected unigrams 772 126 84 238 0 0 855 769 91 860
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Selected bigrams 602 210 97 2 155 639 399 646 90 404
Selected trigrams 116 161 68 0 82 350 229 364 56 223

#Revisions .008 .020 .008 .006
#Contributors .015 .020 .013 .016

#Registered contributors .015 .023 .018
Article age .007 .012 Re

vi
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on

Has empty section .534 .004 .007 .002
Markup to text ratio .017 .001 .003 .003 .003
Mean section length .034 .022 .002 .005 .025

#Sections .010 .033 .018 .023 .002 .025 .014
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e

#References .029 .250 .006 .003 .071 .004
#References per sentence .002 .250 .006 .071
References to text ratio .017 .250 .006 .071

Has references
Has reference list .013 .003
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#External links .067 .007 .097 .001 .026 .050
#Inlinks .145 .004 .005 .003

#Outlinks .013 .002 .011 .007
Inlinks<3 .045 .025 .472 .069 .002
No inlinks .145 .005
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#Organization entities .015
#Person entities .006

#Location entities
#Organization entities per sentence .015

#Person entities per sentence .002 .003 .006
#Location entities per sentence .002 .005 .004 N
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#Discussions on Talk page .024 .144 .048 .018 .010 .016 .005
#Characters .021 .031 .005 .003 .003 .008 .012
#Sentences .025 .005 .003 .003 .004 .005

#Tokens .021 .031 .003 .009 .009

O
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Table 5.7: Overview of the feature utility scores (information gain) of non-lexical features per quality
flaw on the CLEF corpus. The highest ranked feature for each flaw is written in bold. Missing values
indicate that the feature has not been selected by the feature selector. The values for lexical features
are numbers of selected ngrams per feature type.
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Algorithm Average F1

SVM RBF Kernel 0.82
AdaBoost (decision stumps) 0.80
SVM Poly Kernel 0.79
RBF Network 0.78
SVM Linear Kernel 0.77
SVM PUK Kernel 0.76
J48 0.75
Naive Bayes 0.72
MultiBoostAB (decision stumps) 0.71
LibSVM One Class 0.67
Logistic Regression 0.60

Table 5.8: Average F1-scores over all flaws
on NSTYLE-RELP using NSTYLE-ALL fea-
tures

While we restricted the experiments on the CLEF corpus to two classifiers from the Mal-
let toolkit, we explored a wider range of learning algorithms from the Weka toolkit that are
known to work well in similar tasks in order to assess their suitability for quality flaw de-
tection on the NSTYLE corpus. This exploratory evaluation was carried out on the NSTYLE-
RELP configuration using all available features. A list of all learning algorithms along with
the average F1-score achieved on NSTYLE-RELP is shown in table 5.8. The performance has
been evaluated with 10-fold cross validation on 2,000 documents split equally into positive
and negative instances. One class classifiers are trained on the positive instances alone. We
determined the best parameters for each algorithms in a parameter optimization run and
only list the results of the best configuration.

Overall, Support Vector Machines with RBF kernels yielded the best average results and
outperformed the other algorithms on every flaw. We used a sequential minimal optimiza-
tion (SMO) algorithm (Platt, 1998) to train the SVMs and used different γ -values for the RBF
kernel function. In contrast to Ferretti et al. (2012), we did not see significant improve-
ments when optimizing γ for each individual flaw, so we determined one best setting for
each dataset. Since SVMs with RBF kernels are a special case of RBF networks that fit a sin-
gle basis function to the data, we also used general RBF networks that can employ multiple
basis functions, but we did not achieve better results with that approach.

One-class classification, as proposed by Anderka et al. (2012), did not perform well
within our setup. Even though we used an out-of-the-box one class classifier, we achieve
similar results as Anderka et al. in their pessimistic setting, which best resembles our con-
figuration. However, the performance still lacks behind the other approaches in our experi-
ments. The best performing algorithm on the CLEF corpus, AdaBoost with decision stumps
as a weak learner, showed the second best results in the exploratory evaluation on NSTYLE.
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(a) CV on Training Set (b) Train-Test Evaluation

Figure 5.9: Classifier performance on CLEF in terms of precision, recall and F1-score.

5.5.2 Evaluation and Error Analysis

In this section, we separately evaluate the performance of the final classifiers trained on
CLEF and NSTYLE with the best configuration we derived in the parameter optimization
phase as discussed above and analyze the systematic errors made by the classifier.

5.5.2.1 CLEF

Figure 5.9 shows an overview of the classification performance on the training and test set.
Figure 5.9a shows the results on the training datawith the best configuration obtained in the
parameter optimization run and derived in a 10-fold cross validation. Figure 5.9b shows the
performance of the final classifiers trained on the whole training data and evaluated on the
test data which was compiled by the organizers of the quality flaw prediction competition.

The good performance on the Advert flaw comes surprising, since it initially seemed
to be a hard task due to the subjectiveness and subtlety of this flaw. The lexical features
are good indicators for the presence of this flaw. The most highly ranked ngrams mainly
consist of references to business and industry, which can be seen in this list of the top ten
ngrams for this flaw:

companies, ’s, based, business, company, offers, based in, management, services,
products

The selected lexical features are thus highly relevant for the advert context and very pre-
dictive of the flaw. On the other hand, the relatively weak performance on Wikify was
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not expected. The prediction of this flaw particularly suffered from the selection of neg-
ative instances in the training set to which we proposed a solution earlier and which we
demonstrate on the NSTYLE corpus. We furthermore found that the categories Original
Research , Refimprove and Primary Sources have fuzzy boundaries and that Wikipedians do
not use these flaw markers consistently. They are often confused with each other, which
results in biased training data. Cleanup tags related to references and citations should be
consolidated into fewer labels with distinct boundaries.

Compared to the competing systems, FlawFinder achieved the second best results on
the CLEF corpus in terms of overall F1-score. We argue that the precision of a quality flaw
classifier is more important than its recall because it is supposed to facilitate the human
review of articles by listing the most likely candidates suffering from particular flaws. With
respect to precision, FlawFinder achieved the best results on seven out of ten flaws. This
is also reflected by the average F0.5-score, which, in contrast to the balanced F1-score, puts
an emphasis on precision. In the general case, the Fβ-score is calculated as

Fβ = (1 + β2) ⋅
precision ⋅ recall

(β2 ⋅ precision) + recall
FlawFinder achieves the highest average F0.5-score in the field. A comparative overview of
all participants in the competition on quality flaw prediction as determined by the organiz-
ing committee (Anderka and Stein, 2012) can be seen in table 5.9.

We carried out a detailed error analysis for each flaw in order to identify the main types
of errors made by the classifier. The numbers of false positive and false negative instances
according to the cross evaluation on the training set can be seen in table 5.10.

The 71 false positives for Advert mostly contain articles about institutions such as uni-
versities or government bodies. The descriptions of these institutions resemble the de-
scriptions of companies. However, for companies the same way of writing is more often
regarded as advert-style by Wikipedia users than for public institutions. The 94 false nega-
tives are short articles with an average length of 690 tokens. Many of them do not exceed
250 tokens. These articles do not contain enough text to be reliably classified, since the
Advert flaw largely relies on lexical features.

The 200 false positives for the Notability flaw contain many pages about individual
persons, organizations, books or movies. Even Wikipedia users have difficulties to judge
whether a specific subject qualifies for being included in the encyclopedia. Without world
knowledge about the article topic, a reliable judgment cannot be made. Furthermore, the
notability criteria in Wikipedia are highly disputed in the community and are not inter-
preted consistently by all users100. For a large fraction of the 63 false negatives, the Notabil-
ity template has been removed in newer revisions without a major change of the content

100http://en.wikipedia.org/wiki/Deletionism_and_inclusionism_in_Wikipedia
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Flaw System Precision Recall F1 F0.5

Advert Ferschke et al. (2012b) .853 .826 .839 .847
Ferretti et al. (2012) .736 .929 .821 .768
Pistol and Iftenea .047 .582 .086 .058

Empty section Ferschke et al. (2012b) .876 .912 .894 .883
Ferretti et al. (2012) .742 .921 .822 .772
Pistol and Iftenea .056 1.00 .107 .069

No footnotes Ferschke et al. (2012b) .730 .902 .807 .759
Ferretti et al. (2012) .720 .969 .826 .759
Pistol and Iftenea .035 .170 .057 .042

Notability Ferschke et al. (2012b) .661 .852 .745 .692
Ferretti et al. (2012) .740 .858 .794 .761
Pistol and Iftenea .055 .477 .099 .067

Original research Ferschke et al. (2012b) .740 .767 .753 .745
Ferretti et al. (2012) .647 .931 .764 .689
Pistol and Iftenea .023 .542 .044 .028

Orphan Ferschke et al. (2012b) .863 .925 .893 .875
Ferretti et al. (2012) .830 .979 .899 .856
Pistol and Iftenea .017 .241 .031 .021

Primary sources Ferschke et al. (2012b) .736 .866 .796 .759
Ferretti et al. (2012) .717 .923 .807 .751
Pistol and Iftenea .052 .423 .093 .063

Refimprove Ferschke et al. (2012b) .615 .751 .676 .638
Ferretti et al. (2012) .735 .970 .836 .772
Pistol and Iftenea .035 .357 .064 .043

Unreferenced Ferschke et al. (2012b) .780 .884 .829 .799
Ferretti et al. (2012) .745 .954 .836 .779
Pistol and Iftenea .056 1.00 .107 .069

Wikify Ferschke et al. (2012b) .678 .844 .752 .706
Ferretti et al. (2012) .742 .737 .740 .741
Pistol and Iftenea .056 1.00 .107 .069

Average Ferschke et al. (2012b) .753 .853 .798 .770
Ferretti et al. (2012) .735 .917 .815 .765
Pistol and Iftenea .043 .579 .079 .053

a There is no full description available for this rule-based classification system.
It is described in short by Anderka and Stein (2012).

Table 5.9: Comparison of classifier performance on CLEF in terms of precision, recall and f-measure
across all three participants in the competition on quality flaw detection. In addition to the bal-
anced F1-score, we also report the F0.5-score, which puts more emphasis on precision than recall.
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false positives 71 73 200 93 71 158 71 250 164 164
false negatives 94 27 63 143 35 51 35 71 74 68

Table 5.10: Overview of classification errors per flaw on CLEF.

(for example in the article on the Bigfoot Trail101 or the Hong Kong Gold Coast102). This
suggests that the template has been incorrectly assigned to the training article by theWiki-
pedia users.

Many of the 158 false positives for the flawUnreferenced did actually have no references
at all or just contained an external links section. This suggests that the classifier correctly
identified the problem, but the templates were missing in the article. The 51 false nega-
tives are subject to the same problem. In this case, the Unreferenced template has been
used for marking articles that suffer from the Refimprove flaw. For example, in the corpus
version of the article “Robert Hartmann”, the used template was Unreferenced but it has
been changed to the correct Refimprove template in a later version103. Similar confusion
can be observed in the misclassified instances of the other flaws related to references and
citations, such as Original Research , No Footnotes , and Primary Sources . This suggests that
the templates should be better defined and consolidated into fewer categories. Other false
negative instances for Unreferenced are due to the inline usage of the templates that we
have already discussed in section 5.2.1.1. According to the flaw definition, the template
applies to articles that do not have any references. However, when used inline in the form
{{Unreferenced|section}}, it only refers to the section it appears in, while the rest of the
article may cite references104. In order to account for this, each section has to be classified
separately instead of the article as a whole.

According to the instructions provided by the organizers of the competition on flaw
prediction, the Orphan template is to be assigned to any article that “has fewer than three
incoming links”. Therefore, we introduced the feature inlinks < 3, which proved to be
the most discriminative one for this flaw. However, the template description in Wikipedia
states to “only place the {{orphan}} tag if the article has ZERO incoming links from other
articles”105. This discrepancy accounts for most of the false negatives, which have one or
101http://en.wikipedia.org/wiki/index.php?diff=502614831&oldid=407680228
102http://en.wikipedia.org/wiki/index.php?diff=502889724&oldid=461337252
103http://en.wikipedia.org/wiki/index.php?diff=474150162&oldid=466987161
104http://en.wikipedia.org/wiki/index.php?oldid=463206537
105http://en.wikipedia.org/wiki/index.php?oldid=593368301#Criteria
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(a) NSTYLE-BASE (b) NSTYLE-RELP (c) NSTYLE-RELALL

Figure 5.10: Classifier performance on NSTYLE in terms of precision, recall and F1-score evaluated
on 10-fold cross validation with 2000 articles per flaw.

two incoming links from other articles. Removing the above mentioned feature and using
the inlink counts alone can solve this issue.

The false positives for the flawWikify mainly consist of short articles. Wikification is
not an issue commonly addressed in short articles, and it becomes more important as the
article grows. The network and surface features used by the classifier consequently do not
work well with short articles.

No regularities could be found for the misclassification of the flaw Empty section . It is
likely that the main reason for misclassification are parsing errors. We found that sections
containing mainly structured elements such as tables, infoboxes or expanded templates are
particularly hard to cope with.

5.5.2.2 NSTYLE

The SVMs achieve a similar cross-validated performance on all feature sets that contain
ngrams. They only showed minor improvements for individual flaws when adding non-
lexical features. This suggests that the classifiers largely depend on the ngrams and that
other features do not contribute significantly to the classification performance.

While structural quality flaws can be well captured by special purpose features or inten-
sional modeling, as related work has shown, more subtle content flaws such as the neutral-
ity and style flaws are mainly captured by the wording itself. Textual features beyond the
ngram level, such as syntactic and semantic properties of the text, could further improve
the classification performance of these flaws and should be addressed in future work.

Table 5.11 shows the performance of the SVMs with RBF kernel106 on each dataset using
the NSTYLE-NGRAM feature set. The average performance based on NSTYLE-NOWIKI is
slightly lower, while usingNSTYLE-ALL features results in slightly higher average F1-scores.

106γ=0.01 for NSTYLE-BASE and NSTYLE-RELP, γ=0.001 for NSTYLE-RELALL
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BASE RELP RELALL
Flaw F1 F0.5 F1 F0.5 F1 F0.5

Advert .866 .871 .880 .872 .657 .637
Confusing .734 .743 .783 .764 .729 .670
Copy edit .753 .753 .749 .750 .793 .821
Essay-like .812 .814 .825 .816 .704 .645
Globalize .871 .865 .875 .866 .769 .719
In-universe .957 .945 .946 .932 .704 .645
Peacock .768 .776 .815 .813 .687 .620
POV .775 .774 .810 .803 .740 .686
Technical .868 .879 .887 .883 .690 .617
Tone .716 .727 .775 .767 .730 .651
Trivia .745 .758 .756 .756 .769 .748
Weasel .725 .751 .772 .775 .739 .685

⌀ .799 .805 .823 .816 .726 .679

Table 5.11: Fβ scores for the 10-fold cross validation of the SVMs with RBF kernel on all datasets
using NSTYLE-NGRAM features

However, the differences are not statistically significant and thus omitted. Classifiers using
the NSTYLE-NONGRAM feature set achieved average F1-scores below 0.50 on all datasets.
The results have been obtained by 10-fold cross validation on 2,000 documents per flaw.

The classifiers trained on reliable positives and randomuntagged articles (NSTYLE-RELP)
outperform the respective classifiers based on the NSTYLE-BASE dataset for most flaws.
This confirms our original hypothesis that using the appropriate revision of each tagged
article is superior to using the latest available version from the dump. The performance
on the NSTYLE-RELALL dataset, in which the topic bias has been factored out, yields lower
F1-scores than the two other configurations. Flaws that are restricted to a very narrow set
of topics (i.e. Atopic in figure 5.5b is small), such as the in-universe flaw, show the biggest
drop in performance. Since the topic bias plays a major role in the quality flaw detection
task, as we have shown earlier, the topic-controlled classifier cannot take advantage of the
topic information, while the classifiers trained on the other corpora can make use of these
characteristics as the most discriminative features. In the NSTYLE-RELALL setting, how-
ever, the differences between the positive and negative instances are largely determined by
the flaws alone. Classifiers trained on such a dataset therefore come closer to recognizing
the actual quality flaws, which makes them more useful in a practical setting despite lower
cross-validated scores.

In addition to cross-validation, we performed a cross-corpus evaluation of the classifiers
for each flaw. Therefore, we evaluated the performance of the unbiased classifiers (trained
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on RELALL) on the biased data (NSTYLE-RELP) and vice versa. Hereby, the positive training
and test instances remain the same in both settings, while the unbiased data contains neg-
ative instances sampled from Arel and the unbiased data from Arnd (see figure 5.5). With
the NSTYLE-NGRAM feature set, the reliable classifiers outperformed the unreliable classi-
fiers on all flaws that can be well identified with lexical cues, such as Advert or Technical .
In the biased case, we found both topic related and flaw specific ngrams among the most
highly ranked ngram features. For example, in the case of the flaw Technical , we saw many
general ngrams related to mathematics and science and technical terms from these areas.
In the unbiased case, most of the informative ngrams were flaw specific. In the example
of Technical articles, we mainly observed technical terms. Consequently, biased classifiers
fail on the unbiased dataset in which the positive and negative classes are sampled from
the same topics, which renders the highly ranked topic ngrams unusable. Flaws that do
not largely rely on lexical cues, however, cannot be predicted more reliably with the unbi-
ased classifier. This means that additional features are needed to capture these flaws. We
tested this hypothesis by using the full feature set NSTYLE-ALL and saw a substantial im-
provement on the side of the unbiased classifier because of the added features, while the
performance of the biased classifier remained unchanged. This indicates that the predictive
power of the biased classifier mainly depends on the generic ngram features, which cap-
ture the topic cues in the dataset, while it cannot be improved with the additional features.
Since the topic bias is ruled out in the unbiased case, the generic ngrams are less efficient
and the classifier can gain from the additional features.

A direct comparison of our results to related work is difficult, since neutrality and style
flaws have not been targeted before in a similar manner. However, theAdvert flawwas also
part of the ten flaw types in the PAN Quality Flaw Recognition Task (Anderka and Stein,
2012). The best system achieved an F1 score of 0.839, which is just below the results of our
system on the NSTYLE-BASE dataset, similar to the PAN setup.

5.6 Mining Flaw Corrections from the Revision History

In addition to finding articles with potential quality flaws, another important use case of
automatic quality flaw recognition is the identification of the quality problems at a specific
position within a given article. We therefore transfer the quality flaw recognition task from
the article level to the sentence level.

In order to build a sentence classifier for a given flaw type, we have to create corpora
of quality flaw corrections, i.e. pairs of flawed and flawless sentences. Analogously to the
experiments on the article level, the training instances have to be reliable. We therefore
follow a similar approach as in the previous experiment and extract pairs of flawed and
flawless article revisions from the revision history as described in section 5.3. Instead
of using article-scope templates in the corpus creation process, we now use inline- and
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# Flawed Revised

S1 Some believe that Iran controls the majority of terrorism in
Israel.

Israeli intelligence believes that Iran controls the majority of
terrorism in Israel.

S2 The adaptation was highly praised and was subsequently re-
leased on audio cassette.

The adaptation was subsequently released on audio cassette.

S3 The group were told that the Ghost would not come as they
were making too much noise.

Moore told the group the ghost would not come as they were
making too much noise.

S4 The Iraq War troop surge of 2007 was part of this ”new way
forward” and has been credited by some with a dramatic de-
crease in violence and an increase in political and communal
reconciliation in Iraq.

The Iraq War troop surge of 2007 was part of this ”new way
forward”.

S5 According to theorists, there are many signs that will confirm
these claims.

According to theorists, such as David Icke, there are many
signs that will confirm these claims.

S6 In one of his major works he also showed that Indian phi-
losophy, once translated into standard academic language, is
worthy of being called philosophy by Western standards.

He wrote books on Indian philosophy according to Western
academic standards, and made Indian philosophy worthy of
serious consideration in the West.

Table 5.12: Sample sentence pairs from the uncertainty corpus

section-scope templates (see section 5.2.1.1), which mark specific sentences or sections as
flawed. We align each pair of flawed and flawless revisions on a section level by match-
ing the section headlines in both revisions and using Greedy String Tiling (Wise, 1996) for
comparing the section texts. We then discard all section pairs that do not contain any flaw
templates. The remaining section pairs are split into sentences and processed with a text
difference (diff ) algorithm (Myers, 1986). From the so aligned sentences, we finally extract
all pairs that contain at least one flaw template in order to create a parallel corpus of flawed
sentences and their corrections.

A similar approach has been suggested by Recasens et al. (2013), who extract edits from
the article revision history which meant to remove bias from the article text. To this end,
the authors retrieve all articles that are or, at any point in time had been, members of the
Wikipedia NPOV category indicating that their neutrality is disputed. From the revision
histories of these articles, they extract all commits that contained a comment mentioning
POV or NPOV, thus hinting at the neutrality dispute. They finally discard all edits that
merely added a URL or changed less than four characters.

We carried out experiments for the flaws Weasel and Peacock, which we combined into
a single corpus due to their similar purpose which is concerned with textual uncertainty.
The extracted uncertainty corpus contains 16,241 sentence pairs. Table 5.12 shows a set of
sample sentence pairs. Upon manual inspection of a random sample of 200 sentence pairs,
we identified six main types of corrections for uncertainty flaws: pronoun replacement
(S1), intensifier removal (S2), passive-active transformation (S3), clipping (S4), expansion
(S5), paraphrasing (S6).

On this corpus, we trained a binary uncertainty classifier for sentences using the Flaw-
Finder system described in section 5.4 using only NGRAM features. With this baseline ap-
proach, we achieved an F1-Score of 0.65 in identifying sentences expressing uncertainty.
The task carried out in this experiment is similar to the uncertainty detection subtask
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(Task1W) of the CONLL 2010 shared task on hedge detection (Farkas et al., 2010). The
winning team of that task achieved a performance of F1 = 0.60 on identifying uncertain
sentences using a dictionary of hedge cues as their most predictive features. On the same
corpus, FlawFinder achieved an F1-Score of 0.59 using the same configuration as on the
parallel corpus described above. Even though the two corpora are not directly compara-
ble, they are similar enough to allow the tentative conclusion that the parallel data mined
with our approach helps to improve the classification performance compared to a corpus
that does not contain explicit negative instances. This goes against the intuition we have
gained in the document-level experiments, where the cross-validated performance dropped
on the unbiased dataset. The main reason for this is that the shorter texts in the sentence
corpora are less affected by the topic bias than longer documents, which was the main
reason for the unrealistically high cross-validated performance.

Apart from the sentence-level classification task, the proposed approach for mining
flawed sentences and their corrections from Wikipedia gives rise to many opportunities in
analytical linguistic research. Such corpora can easily be created for any inline- or section-
scope cleanup templates, whichmakes it possible to obtain parallel corpora for a wide range
of linguistic phenomena.

5.7 Limitations in the Predictability of Quality Flaws

In section 5.2.3, we have evaluated how well a human annotator can manually perform
the quality flaw prediction task in order to gain an impression of the reliability of cleanup
templates as quality flaw markers. The study showed that flaws which usually affect only
parts of an article are harder to detect by humans than flaws that affect the article as a
whole. This was not necessarily the case in the machine learning experiments. We now
return to this issue and review the limitations of cleanup templates as the basis for training
quality flaw classifiers on a broader level.

We have already established in chapter 4 that quality dimensions have to be measur-
able in order to be useful for information quality management. In particular, we discussed
the consistency , subjectivity , operationalizability and interpretability of quality dimensions.
Three of these properties can also be directly translated to the quality flaw prediction task
and can be described by the following questions:

Flaw Subjectivity: How much room for interpretation does a given template or flaw
definition allow and how consistent are the label assignments across different raters?

Flaw Operationalizability: Is it possible to identify descriptive features that are predictive
of the given quality flaw and that can be automatically extracted from the available data,
i.e. the article and its metadata?
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Flaw Consistency: Given that a set of features has been identified that are indicative of a
given flaw, do the same feature values indicate the presence or absence of the flaw
consistently in every possible situation?

In order to illustrate the meaning of these three properties, we discuss two exemplary
quality flaws from the CLEF and NSTYLE corpora in the light of their subjectivity, opera-
tionalizability and consistency.

The Orphan flaw identifies articles that are not connected to other articles via hyper-
links. Given only this basic definition, the decision whether an article should or should
not be marked with the flaw is purely objective without any room for interpretation or
personal judgment. In practice, however, the orphan criteria107 include cases of weakly
linked articles or small cliques of articles and leave the decision whether to assign the label
in these fringe cases up to the community. Hence, the orphan flaw cannot be considered
purely objective but is subjective to a low degree. Since the properties that characterize
an article as orphaned are all governed by technical features such as incoming and outgo-
ing links, the flaw has a high degree of operationalizability. The consistency of the flaw is
only influenced by the fringe cases included in its definition, i.e. whether or not a weakly
linked article is considered orphaned. Apart from that, the clear-cut features result in a
high degree of consistency.

The Technical flaw identifies articles that are written in an overly technical tone that
prevents the general audience from understanding it. The subjectivity of its definition al-
ready becomes clear in the message box of this flaw which states

This article may be too technical for most readers to understand. Please help im-
prove this page to make it understandable to non-experts, without removing the
technical details. The talk page may contain suggestions.108

In fact, whether or not an article can be considered to be too technical for a general audience
heavily depends on the familiarity of the article maintainer with the subject matter and on
their perception of the level of understanding that the general audience possesses. Even
more severe is the issue of flaw consistency in the case of Technical articles. Since the
notion of this flaw is not absolute but relative to the article topic, i.e. the article text is
considered to be more technical than it needs to be, we need to consider the article topic as
a frame of reference. For example, it might not be possible to write a comprehensive article
about a technical subject without ample use of technical vocabulary, while the same number
of technical terms might be considered excessive in an equally long non-technical article.
Moreover, terms that might be considered overly technical in one article might be necessary
vocabulary in another and considered appropriate in that context. Incorporating the topic

107http://en.wikipedia.org/wiki/WP:O
108http://en.wikipedia.org/wiki/index.php?oldid=582079420
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as a frame of reference is therefore important when modeling flaws that are interpreted
differently across different subject areas in Wikipedia.

5.8 Chapter Summary

In this chapter, we presented an approach to automatically identify quality flaws in Wiki-
pedia articles by means of cleanup template prediction. While cleanup templates are good
proxies for quality flaws and thus a viable resource for compiling quality flaw corpora as
training data for machine learning classifiers, we found that many templates exhibit a topic
bias that negatively influences the classifier performance and even biases manual analyses.

We found that certain templates exhibit a topical preference, i.e. they tend to occur in
articles about particular topics, or even show a topical restriction, i.e. the templates exclu-
sively occur in articles about particular topics. This fact has to be taken into account when
sampling the data for quality flaw corpora in order to avoid a topic bias that influences both
any data analyses and machine learning classifiers trained on this data.

We therefore introduced an approach to extract reliable positive and negative training
instances from the article revision history which factors out the topic bias and improves
the overall data quality.

We furthermore presented a corpus of articles with neutrality and style flaws that has
been sampled with this technique. Our machine learning experiments on this corpus show
that the reliable classifiers tend to exhibit a lower cross-validated performance than classi-
fiers trained on the biased datasets but the scores more closely resemble their actual per-
formance in practical settings.

Finally, we described an approach for mining quality flaw corrections from the revision
history. This method can both be used to create a new parallel corpus of flawed and flawless
language as well as for identifying the position of quality flaws within articles rather than
merely identifying flawed articles.

We closed the chapter by discussing the limitations of the quality flaw prediction task
based on cleanup templates. While some flaws are predictable on a global scale using all
available training data, like most structural and organizational flaws, others have to be
considered within a narrow context of the subject area they are used in. That is, the features
which indicate a flaw in one subject area might not be predictive of the same flaw in another
subject area and rather result in a higher rate of false positives.
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Chapter 6

Dialog Analysis of Wikipedia Talk Pages

“A conversation is a dialogue, not a monologue. That’s why
there are so few good conversations: due to scarcity, two
intelligent talkers seldom meet.”

— Truman Capote

Every article in Wikipedia has an associated discussion page – or Talk page – on which
the active contributors discuss the future development of the article, coordinate their work
and collaboratively decide how conflicting plans regarding the improvement of the article
should be resolved. In this chapter, we discuss how the information on the article Talk
pages can be leveraged for information quality management purposes and how an anal-
ysis of these pages provides us with insights into the collaborative writing process that
complements the knowledge we can gain from analyzing the article revision history.

We first give an overview of our motivation (section 6.1) and present the theoretical
background for our work (section 6.2) We then discuss related work on computational dia-
log analysis in general and the analysis of Wikipedia discussions in particular (section 6.3).
We proceed with a detailed examination of two Wikipedia discussion corpora (section 6.4)
which we annotated with an annotation scheme to capture the coordination efforts for ar-
ticle improvement (section 6.5). Finally, we investigate how these corpora can be used to
automatically tag unseen discussions with dialog act labels which identify quality problems
discussed on the Talk pages and the solutions proposed by the contributors (section 6.6).
We conclude the chapter with an overview of a real world application of the Talk page
classification system (section 6.7) and a summary of our findings (section 6.8).
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6.1 Motivation and Overview

The article Talk pages in Wikipedia are the main communication hub for the discussions
related to article improvement, work coordination and quality assessment. On these pages,
decisions aremade that shape the evolution of the associated articles and have a vital impact
on their quality. As we have discussed in chapter 3.5, Talk pages are largely unstructured
wiki pages which mimic the appearance of traditional threaded web forums. The disparity
between the lack of explicit structure on the one hand and the structured form it seeks to
resemble on the other hand is one of the main reasons why these Talk pages are difficult to
use by novice users (Schneider et al., 2011) and why they are hard to process computation-
ally (Ferschke et al., 2012a).

As studies have shown, the overall discussion activity in Wikipedia is on the rise, indi-
cated by an increasing proportion of Talk page edits, while the relative number of article
edits constantly declines (Schneider et al., 2010; Stvilia et al., 2008). High discussion activ-
ity naturally results in fast growing Talk pages. However, threads that reach a certain size
and age and that are inactive for some time are automatically archived and thus no longer
directly visible on the main article Talk page. While the archived information is techni-
cally retained, the rudimentary search capabilities109 and the lack dialog structure do not
allow users to easily retrieve old content from the archives, which effectively renders old
information lost.

As a consequence, important decisions once made about an article are likely to be for-
gotten over time and many recurring issues and topics have to be discussed over and over
again which unnecessarily binds much of the available workforce. Furthermore, while Talk
pages are directly connected to individual articles, topics discussed in the context of one
article might still be relevant for related articles. However, there is no easy way to make
this connection as a user without actively monitoring the Talk pages of all related articles.

Finally, even though Talk pages are mainly used by Wikipedia users who actively con-
tribute to the encyclopedia, these discussions often hold information that could be interest-
ing to the general public. Linking the information on the Talk pages to the related sections
in the corresponding article could help casual users of Wikipedia to gain access to this
additional information source. However, without a basic understanding of the discourse
structure of the Talk pages, it is not possible to establish this link automatically or semi-
automatically.

Extracting the essential information about work coordination with a particular focus
on the article quality improvement activities will help to gain an overview of the relevant
topics covered and the decisions made in past discussions and thus improve the consistency

109By default, no search in Talk pages archives is available. A rudimentary search function can be manually
enabled by including the corresponding template (e.g. Template:Search_archives ) on the main Talk page of
an article.
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and availability of this important information across Wikipedia. Such a system will take
a key role in the global quality management process and even holds opportunities to im-
prove the user experience of the encyclopedia. One of the main challenges on the way to
achieve this goal is to overcome the unstructured nature of the Talk pages and to reliably
segment the dialog while retaining relevant meta information, such as the identity of the
contributors, the time stamp of each contribution and the basic thread structure. This is the
prerequisite for employing semi-supervised machine learning to classify the contributions
into predefined categories tailored towards quality assessment activities, which is the main
topic of this chapter.

From a scientific point of view, article Talk pages are a unique type of web discourse
and a valuable resource for the humanities and writing sciences, since the discussions de-
velop in parallel with the discussed articles and provide insights into the meta level of the
collaborative writing process that normally remains hidden. With structured access to this
resource, the linguists and researchers in the writing sciences have the unparalleled possi-
bility to observe these hidden processes without having to conduct interviews or carrying
out supervised field experiments.
The main contributions of this chapter can be summarized as follows:

Contribution 6.1: We present an algorithm for dialog segmentation of Wikipedia article
discussions based on the revision history (section 6.4.1).

Contribution 6.2: We compile two corpora of Wikipedia article discussions from the Simple
English Wikipedia and the English Wikipedia (section 6.4).

Contribution 6.3: We introduce annotation schemes for annotating turns in article
discussions to capture the coordination efforts of article improvement (section 6.5).

Contribution 6.4: We annotate the corpora with our newly developed annotation schemes
and analyze the resulting datasets (section 6.5).

Contribution 6.5: We develop a system for automatically labeling turns in Wikipedia article
discussions with dialog act labels from our annotation scheme and evaluate the
performance of the classifiers (section 6.6).

6.2 Linguistic Background

Early models of human communication predominantly followed a positivist view, which
regards logic and reason to be the governing principle of language. It postulates that human
language merely serves as a passive container of meaning that can readily be extracted by
anyone able to decode the signs, i.e. the words of the language (Krippendorff, 1994).

This rather simplistic view of language and communication was soon superseded by
more advanced models following the theoretical paradigm of structural linguistics, which
acknowledge that language serves different functions at the same time. Human communi-
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cation has therefore to be analyzed on multiple levels simultaneously under consideration
of the context and participants in the communication (Bühler, 1934; Jakobson, 1960).

Speech Act Theory. John Austin finally shifted the focus of linguistics from the mere
declarative use of language as a means for making factual statements towards its non-
declarative use as a tool for performing actions. In his influential work “How to do things
with words” (1962), Austin argues that a large part of human language goes beyond mere
statements, assertions, or propositions and involves the performance of actions. He fur-
thermore claimed that there are utterances that cannot be analyzed in terms of truth con-
ditions, on which most previous theories have relied. This newfound concept of language
as a means to perform actions ultimately led to the theory of speech acts. Austin defines
that language performs actions on three levels simultaneously, the loctionary level , the il-
locutionary level and the perlocutionary level .

The locutionary act describes the performance of the utterance itself, i.e. its verbaliza-
tion and pronunciation. At the same time, the illocutionary act concerns the pragmatic
level of the utterance, i.e. it captures the intention of the speaker. Finally, the perlocution-
ary act is directed at the recipient of the message and the effect the utterance has achieved
on him. Only by analyzing communication on all three levels it is possible to achieve a
full understanding of its meaning. Austin’s speech act theory was further systematized by
Searle (1969), who, among other refinements of the theory, introduced a taxonomy of illo-
cutionary acts (Searle, 1976). He distinguishes between five different illocutionary classes

Assertives/Representatives: communicate a proposition which the sender of the message
believes to be true
Example: It’s raining today.

Directives: cause the recipient to perform an action
Example: Close the door!

Commissives: commit the sender to perform an action in the future
Example: I’ll be back.

Expressives: expresses the sender’s attitude or emotions towards the proposition of the
utterance
Example: Good job, congratulations.

Declarations: constitute an act that directly changes reality
Example: I now pronounce you husband and wife.

This taxonomy of illocutionary acts has become an important instrument for the analysis
of human utterances and has often been used as the starting point for the development of
new schemes for speech act analyses, both in traditional linguistic (Sadock, 2006) and in
computational linguistics (Jurafsky, 2006).
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Dialog Acts. According to Bunt and Black (2000), classifying utterances with respect to
the performed speech acts promises deep insights into the pragmatic structures of the dis-
course. The concept is of particular importance for the analysis of human-human dialog .
While a monologue can be considered a form of unidirectional communication between a
sender (writer, speaker) and a receiver (reader, listener) , we define a dialog as the bidi-
rectional communication between multiple agents who exchange coherent messages and
switch between the roles of sender and receiver in the course of the communication. Al-
though it is possible to have multiple senders at the same time (e.g. several people talking
or writing at the same time), we only consider the case of a single sender at the same time.
As long as an agent is assigned the role of the sender, it is considered to be his or her turn .
Passing the sender role to each other is therefore defined as turn-taking .110

In dialog settings, speech acts are usually referred to as dialog acts . The exact definition
of this term differs across the literature (Bunt and Black, 2000; Jurafsky, 2006), but can be
summarized as a specialized speech act defining the function of an utterance in the context of a
particular dialog . Other terms, such as communicative acts , conversation acts , conversational
moves or dialog moves roughly translate to similar concepts (Traum, 2000).

Dialog Act Identification for IQ Management. Since the discussions on Wikipedia arti-
cle Talk pages mainly revolve around the development of the associated articles and the
improvement of their quality, identifying dialog acts tailored towards this kind of discourse
can help to identify and organize the main intentions of the contributions in these discus-
sions. Instead of applying the generic classification scheme of illocutionary speech acts
proposed by Searle, we have to define a more fine grained set of specialized dialog acts that
satisfy the requirements of the information quality management setting. We propose such
a scheme in section 6.5 of this chapter.

6.3 Related Work

While the linguistic theory provides the theoretical framework for computationally ana-
lyzing human dialog, it is necessary to operationalize the linguistic concepts in a concrete
scheme in order to annotate, process, and analyze real-world examples of human dialog.

A well known, domain- and task-independent annotation scheme is DAMSL – Dialog
Act Markup in Several Layers (Core and Allen, 1997). It was created as the standard annota-
tion scheme for dialog tagging on the utterance level by the Discourse Resource Initiative.
It uses a four-dimensional tagset that allows arbitrary label combinations for each utter-
ance. Jurafsky et al. (1997) augmented the DAMSL scheme to fit the peculiarities of the

110For the sake of brevity, a more detailed introduction to conversation analysis, the mechanics of dialog
situations, conversational implicature or indirect speech acts has been omitted. A comprehensive overview
can be found in Hutchby and Wooffitt (2008).
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Switchboard corpus. The resulting SWDB-DAMSL scheme contained more than 220 distinct
labels which have been clustered to 42 coarse grained labels. Both schemes have often been
adapted for special purpose annotation tasks.

While DAMSL was originally designed for annotating transcripts of spoken dialog, a
large part of current research is directed at written online discourse. In addition to analyz-
ing web forums (Kim et al., 2010a), chats (Carpenter and Fujioka, 2011) and emails (Cohen
et al., 2004), Wikipedia Talk pages have recently moved into the center of attention of the
research community.

In the remainder of this section, we will discuss the different aspects of Wikipedia dis-
cussions that have been investigated in related work and which are highly relevant for our
efforts to analyze quality management activities on Talk pages.

6.3.1 Work Coordination and Conflict Resolution

Viégas et al. (2007) were among the first to draw attention to Wikipedia Talk pages as an
important resource in its own right. In an empirical study, they discovered that articles
with Talk pages have, on average, 5.8 times more edits and 4.8 times more participating
users than articles without any Talk activity. Furthermore, they found that the number
of new Talk pages increased faster than the number of content pages. In order to better
understand how the rapidly increasing number of Talk pages are used byWikipedians, they
performed a qualitative analysis of selected discussions. The authors manually annotated
25 “purposefully chosen”111 Talk pages with a set of 11 labels in order to analyze the aim
and purpose of each user contribution. Each turn was tagged with one of the following
labels:

– request for editing coordination
– request for information
– reference to vandalism
– reference to Wikipedia guidelines
– reference to internal Wikipedia resources
– off-topic remark
– poll
– request for peer review
– information boxes
– images
– other

The first two categories, requests for coordination (58.8%) and information (10.2%), were
most frequently found in the analyzed discussions, followed by off-topic remarks (8.5%),
111According to Viégas et al. (2007), “[t]he sample was chosen to include a variety of controversial and non-

controversial topics and span a spectrum from hard science to pop culture.”
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guideline references (7.9%), and references to internal resources (5.4%). This shows that
Talk pages are not used just for the “retroactive resolution of disputes”, as the authors hy-
pothesized in their preliminary work (Viégas et al., 2004); rather, they are used for proactive
coordination and planning of the editorial work.

Schneider et al. (2010, 2011) pick up on the findings of Viégas et al. and manually an-
alyze 100 Talk pages with an extended annotation scheme. In order to obtain a represen-
tative sample for their study, they define five article categories to choose the Talk pages
from: most-edited articles , most-viewed articles , controversial articles , featured articles , and
a random set of articles . In addition to the 11 labels defined by Viégas et al., Schneider et al.
classify the user contributions as

– references to sources outside Wikipedia
– references to reverts, removed material or controversial edits
– references to edits the discussant made
– requests for help with another article

The authors evaluated the annotations from each category separately and found that the
most frequent labels differ between the five classes. Characteristic peaks in the class dis-
tribution could be found for the “reverts” label, which is a strong indicator for discussions
of controversial articles. Interestingly, the controversial articles did not have an above-
average discussion activity, which was initially expected due to a high demand of coordi-
nation. The labels “off-topic”, “info-boxes”, and “info-requests” peak in the random cate-
gory, which are apt to contain shorter Talk pages than the average items from the other
classes. In accordance with Viégas et al., coordination requests are the most frequent labels
in all article categories, running in the 50% to 70% range. The observed distribution patterns
alone are not discriminative enough for identifying the type of article a Talk page belongs
to, but they nevertheless serve as valuable features for the Talk page analysis.

Furthermore, the labels can be used to filter or highlight specific contributions in a long
Talk page to improve the usability of the Talk platform. Schneider et al. (2011) perform a
user study in which they evaluate a system that allows discussants to manually tag their
contributionwith one of the labels. Most of the 11 participants in the study perceived this as
a significant improvement in the usability of the Talk page, which they initially regarded as
confusing. Given enough training data, this classification task can be tackled automatically
using machine learning algorithms.

In a large-scale quantitative analysis, Kittur et al. (2007) confirm earlier findings by
Viégas et al. and demonstrate that the amount of work on content pages in Wikipedia
is decreasing while the indirect work is on the rise. They define indirect work as “excess
work in the system that does not directly lead to new article content.” Besides the efforts
for work coordination, indirect work comprises the resolution of conflicts in the growing
community of Wikipedians. In order to automatically identify conflict hot spots or even
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Table 6.1: Page-level features
proposed by Kittur et al. (2007)

Feature Page

Revisionsa Article4, Talk1, Article/Talk
Page length Article, Talk, Article/Talk
Unique editorsa Article5, Talk, Article/Talk
Unique editorsa/Revisionsa Article, Talk3

Links from other articlesa Article, Talk
Links to other articlesa Article, Talk
Anonymous editsa,b Article7, Talk6

Administrator editsa,b Article, Talk
Minor editsa,b Article, Talk2

Revertsa,c Article
a Raw counts 1-7 Feature utility rank
b Percentage
c By unique editors

to prevent future disputes, the authors developed a model of conflict on the article level
and demonstrate that a machine learning algorithm can predict the amount of conflict in
an article with high accuracy. In contrast to the works discussed above, Kittur et al. do not
employ a hand-crafted coding scheme to generate amanually annotated corpus; rather, they
extract the “controversial” tags that have been assigned to articles with disputed content
by Wikipedia editors. This human-labeled conflict data is obtained from a full Wikipedia
dumpwith all page revisions (revision dump ) using theHadoop112 framework for distributed
processing. The authors define a measure calledControversial Revision Count (CRC) as “the
number of revisions in which the ‘controversial’ tag was applied to the article”. These scores
are used as a proxy for the amount of conflict in a specific article and are predicted by a
Support Vector Machine regression algorithm from raw data. The model is trained on all
articles that are marked as controversial in their latest revision and evaluated by means of
five-fold cross validation. As features, the authors define a set of page- level metrics based
on both articles and talk pages (see table 6.1). They evaluated the usefulness of each feature,
which is indicated by the individual ranks as superscript numbers in the table.

The authors report that the model was able to account for almost 90% of the variation
in the CRC scores (R2 = 0.897). They furthermore validate their model in a user study by
havingWikipedia administrators evaluate the classification results on 28 manually selected
articles that have not been tagged as controversial. The results of this study showed that the
CRC model generalizes well to articles that have never been tagged as controversial. This
opens up future applications like identifying controversial articles before a critical point is
reached.
112http://hadoop.apache.org
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6.3.2 Authority and Social Alignment

Discussions on article Talk pages often aim at keeping articles in line with Wikipedia’s
guidelines for quality, neutrality and notability. The outcome of these discussions therefore
can have a big impact on the future development of an article. If such a discussion is not
grounded in authoritative facts but rather in subjective opinions of individual users, a dis-
pute about content removal, for example, may lead to the unjustified removal of valuable
information. Wikipedia Talk pages are, for the most part, pseudonymous discussion spaces
and most of the discussants do not know each other personally. This raises the question
how the users of Talk pages decide which claim or statement in a discussion can be trusted
and whether an interlocutor is reliable and qualified.

Oxley et al. (2010) analyze how users establish credibility on Talk pages. They define six
categories of authority claims with which users account for their reliability and trustfulness
(see table 6.2). Based on this classification, Bender et al. (2011) created a corpus of social
acts in Wikipedia Talk pages (AAWD). In addition to authority claims, the authors define a
second annotation layer to capture alignment moves—i.e. expressions of solidarity or signs
of disagreement among the discussants. At least two annotators labeled each of the 5,636
turns extracted from 47 randomly sampled Talk pages from the English Wikipedia. The
authors report an overall inter-annotator agreement of κ = 0.59 for authority claims and
κ = 0.50 for alignment moves.

Marin et al. (2011) use the AAWD corpus to perform machine learning experiments
targeted at automatically detecting authority claims of the forum type (cf. Table 6.2) in
unseen discussions. They particularly focus on exploring strategies for extracting lexical
features from sparse data. Instead of relying only on n-gram features, which are prone to
overfittingwhen usedwith sparse data, they employ knowledge-assistedmethods to extract
meaningful lexical features. They extract word lists fromWikipedia policy pages to capture
policy-related vocabulary and from the articles associated with the Talk pages to capture
vocabulary related to editor discussions. Furthermore, they manually create six word lists
related to the labels in the annotation scheme. Finally, they augment their features with
syntactic context gained from parse trees in order to incorporate a higher level linguistic
context and to avoid the explosion of the lexical feature space that is often a side effect of
higher level n-grams. Based on these features, the authors train a maximum entropy clas-
sifier to decide for each sentence whether it contains a forum claim or not.113 The decision
is then propagated to the turn level if the turn contains at least one forum claim. The au-
thors report an F1-score for the evaluation set of 0.66. Besides being a potential resource
for social studies and online communication research, the AAWD corpus and approaches to

113The corpus was split into training set (67%), development set (17%) and test set (16%).
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Claim type Based on

Credentials Education, Work experience
Experiential Personal involvement in an event
Institutionala Position within the organizational structure
Forum Policies, Norms, Rules of behavior (in Wikipedia)
External Outside authority or resource
Social Expectations Beliefs, Intentions, Expectations of social groups
a Not encoded in the AAWD corpus

Table 6.2: Authority claims proposed by Oxley et al. (2010) and Bender et al. (2011)

automatic classification of social acts can be used to identify controversial discussions and
online trolls.114

In an attempt to investigate how users of different status groups interact, Danescu-
Niculescu-Mizil et al. (2012) created a corpus of 5,657 Talk pages with overall 125,292 dis-
cussion threads. Their hypothesis was that the amount of language coordination in a con-
versation will depend on the social status of the participants. The authors define language
coordination as the stylistic mimicry of the interlocutor which describes the tendency of a
person to adapt the usage of function words of his or her communication partner. Social
status in the Wikipedia context is furthermore defined as the user role of the discussants
(see chapter 3.3.1), such as registered user or admin . The authors find that people with a
lower social status exhibit a greater tendency to language coordination than users with
more power and that a change in status will also trigger a change in the coordination be-
havior. Furthermore, the intention to convince a communication partner with an opposing
view of their own opinion will result in a power deficit and thus trigger a higher level of
language coordination. This effect can not only be observed in Wikipedia, but is a stable
phenomenon in other kinds of communication such as Supreme Court meetings (Danescu-
Niculescu-Mizil et al., 2012).

6.3.3 User Interaction

It is not only the content of Talk pages which has been the focus of recent research, but also
the social network of the users who participate in the discussions. Laniado et al. (2011) cre-
ate Wikipedia discussion networks from Talk pages in order to capture structural patterns
of interaction. They extract the thread structure from all article and user Talk pages in the
English Wikipedia and create tree structures of the discussions. For this, they rely on user
signatures and turn indentation. The authors consider only registered users, since IP ad-

114A troll is a participant in online discussions with the primary goal of posting disruptive, off-topic messages
or provoking emotional responses.
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dresses are not unique identifiers for the discussants. In the directed article reply graph, a
user node A is connected to a node B if A has ever written a reply to any contribution from
B on any article Talk page. They furthermore create two graphs based on User Talk pages
which cover the interactions in the personal discussion spaces in a similar manner.

The authors analyze the directed degree assortativity of the extracted graphs. In the
article discussion network, they found that users who reply to many different users tend
to interact mostly with inexperienced Wikipedians while users who receive messages from
many users tend to interact mainly with each other. They furthermore analyzed the discus-
sion trees for each individual article, which revealed characteristic patterns for individual
semantic fields. This suggests that tree representations of discussions are a good basis for
metrics characterizing different types of Talk pages, while the analysis of User Talk pages
might be a good foundation for identifying social roles by comparing the different discus-
sion fingerprints of the users.

A different aspect of the social network analysis in Wikipedia is examined by Massa
(2011). He aims at reliably extracting social networks from User Talk pages. Similarly
to Laniado et al. (2011), he creates a directed graph of user interactions. The interaction
strength between two users is furthermore quantified by weighted edges with weights de-
rived from the number of messages exchanged by the users. The study is based on net-
works extracted from the Venetian Wikipedia. Massa employ two approaches to extract
the graphs automatically, one based on parsing user signatures (signature-based approach)
and the other one based on the revision history regarding every commit by a user as an
individual message (history-based approach). He compares the results with a manually
created gold standard and finds that the revision based approach produces more reliable
results than the signature-based approach, which suffers from the extreme variability of
the signatures. However, history-based processing often resulted in higher weights of the
edges, because several edits of a contribution are counted as individual messages. Massa
furthermore identifies several factors that impede the network extraction, like noise in the
form of bot messages and vandalism, inconsistently used usernames, and unsigned mes-
sages. While these insights might be a good basis for future work on network extraction
tasks, they are limited by the small Venetian Wikipedia on which the study is based. Talk
pages in larger Wikipedias are much longer, more complex and are apt to contain pitfalls
not recognized by this work.

6.3.4 Information Quality

Related work that uses Wikipedia Talk pages for information quality analyses inWikipedia
is scarce, but most relevant for the work presented in this thesis. As we have argued before,
the information on Talk pages contains valuable insights into the readers’ judgments of
articles and comments about their potential deficiencies.
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Stvilia et al. (2005, 2007, 2008) analyze 60 discussion pages in order to identify which
types of information quality (IQ) problems have been discussed by the community. Based
on this analysis, they determine twelve IQ problems along with a set of related causal fac-
tors for each problem and actions that have been suggested by the community to tackle
them. For instance, IQ problems in the quality dimension complexity may be caused by low
readability or complex language and might be tackled by replacing, rewriting, simplifying,
moving, or summarizing the problematic article content. They furthermore identify trade-
offs among these quality dimensions of which the discussants on Talk pages are largely
aware. For example, an improvement in the dimension completeness might result in a dete-
rioration in relevance , i.e. the more details are added to an article, the higher is the chance
to incorporate irrelevant information.

To the best of our knowledge, no previous work has yet attempted to use machine
learning to automatically classify user contributions in Wikipedia Talk pages with respect
to the article improvement efforts they express. This is the subject of our work presented
in this chapter.

6.4 Wikipedia Article Discussion Corpora

For our experiments, we created two corpora of Wikipedia Talk pages from the Simple
English Wikipedia (SEWD corpus) and the English Wikipedia (EWD corpus). While the
English Wikipedia is the largest language version (see figure 3.1) with the biggest commu-
nity, the Simple English Wikipedia is a small, special purpose Wikipedia that hosts articles
written in a basic English vocabulary and a simple syntax so they are easy to understand by
non-native speakers. In the remainder of this section, we first describe the data extraction
and discourse segmentation techniques used for retrieving and preprocessing the data for
the corpora. We then discuss the sampling strategies taken for selecting the documents. In
the subsequent section (6.5), we introduce the annotation schemes used for annotating the
corpora, describe the annotation process and provide a detailed corpus analysis.

As already discussed in chapter 3.6, there are multiple possibilities to access Wikipedia
programmatically. The best approach depends on the demands of the particular task at
hand. Similarly to the experiments in chapter 5, we take a hybrid approach in which we
combine a raw text corpus containing the desired Talk pages with a preprocessed database
of the full Wikipedia from which the pages have been extracted. This way, while having
a fixed corpus for human annotation, we can use the corresponding Wikipedia database
at any time to directly retrieve additional information about the Talk pages, the associated
articles or the involved users (see figure 6.1). We use the Java Wikipedia Library (JWPL) for
creating the Wikipedia database representations from the freely available Wikipedia XML
data dumps paired with the Wikipedia Revision Toolkit (WRT) to include the revision his-
tory of all articles and Talk pages. Both JWPL andWRT have been discussed in chapter 3.6.2.
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Figure 6.1: Creation and utilization of theWikipedia Talk page corpora. The corpus creation process
is marked in gray, the human annotation task in blue and the computational analysis and machine
learning task in red. The XML dumps of the remoteWikipedia databases are provided as downloads
by Wikimedia under http://dumps.wikimedia.org

For the SEWD corpus, we use a snapshot of the Simple English Wikipedia115 from 6th
April 2011. For the EWD corpus, we use a snapshot of the English Wikipedia116 from 5th
April 2011.

6.4.1 Dialog Segmentation

As shown in chapter 3.5, Talk pages are regular wiki pages without any explicit markup of
the discourse structure. This lack of structure causes not only considerable confusion and
disorientation among the discussing users (Schneider et al., 2011), it also makes automatic
processing of these pages challenging.

In order to properly analyze the user discussions, we have to segment the discussion
pages and extract the basic discourse structure. We therefore have to (i) identify all discus-
sion threads on the page, (ii) segment each thread into individual turns, and (iii) retrieve
meta information for each turn, such as the contributing user and the time stamp of the
contribution.

115http://dumps.wikimedia.org/simplewiki
116http://dumps.wikimedia.org/enwiki
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(a) Original contribution by user Cas Liber

(b) Same contribution with in-text replies

Figure 6.2: In-text replies on a Talk page of the article Monaro Highway
(English Wikipedia, revision IDs 575007442 and 575010159, emphasis added)

Laniado et al. (2011) and Danescu-Niculescu-Mizil et al. (2012) tackle the dialog segmen-
tation problem by using text indentation and inserted user signatures as clues. However,
according to a study by Viégas et al. (2007), only 67% of all contributions onWikipedia Talk
pages are signed, which makes signatures an unreliable predictor for turn boundaries and
thus insufficient for a reliable reconstruction of the thread structure. And even from the
available signatures, it is not always possible to retrieve the necessary meta information
(see figure 3.6 in chapter 3.5).

Another factor that limits the reliability of a rule-based discourse parsing approach is
the non-standard usage of the Talk pages. In contrast to conventional threaded discussions,
such as web forums or newsgroups, Wikipedia Talk pages might exhibit cases of in-text
replies , an approach to insert a new message in an existing contribution of a different user
in order to reply to a specific part of said contribution. While editing the contributions
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of other users is frowned upon according to the Talk page policies, it is not prohibited by
technical means and is allowed under special circumstances117. In-text replies are often used
as the preferred way to respond to very long turns, especially when they contain multiple
questions or action items. The latter can frequently be observed in threads discussing a list
of necessary cleanup tasks which have to be addressed before an article can be promoted
to good or featured status. Figure 6.2 shows an example of in-text replies inserted into an
existing post that reviews the quality status of the associated article. In the remainder of
this section, we describe our approach to reliably segment user discussions.

6.4.1.1 Topic Segmentation

While there is no explicit markup for the inner discourse structure, Talk pages make light
use of general purpose MediaWiki markup to provide a rough separation into discussion
topics.

Therefore, we can employ a MediaWiki markup parser to identify the outer boundaries
of the discussion threads. We use the built-in parser of the JWPL software, which allows
retrieving section elements and headlines corresponding to the discussion topics and topic
titles on Talk pages. In our experiments, themarkup-based boundary identification resulted
in a perfect segmentation of the discussion topics. As the only exception, we found that
discussion pages of newly created or low-profile articles with little discussion activity do
not make use of explicit sectioning. However, as the discussion activity increases, a coarse
grained discourse structure emerges automatically.

6.4.1.2 Turn Segmentation

As a second step, we have to identify the turn boundaries within each discussion thread.
Despite existing conventions that define how the dialog is supposed to be formatted by the
users118, we refrain from making too many assumptions about the format, since the guide-
lines and best practices are often not being precisely followed by all users. Our only fixed
assumption about the discussion format is that every turn starts with a new line. We there-
fore consider every end-of-line (EOL) character in the discussion text to mark the boundary
to a new paragraph and every paragraph to be a turn candidate . Based on this assumption,
we can reliably preprocess the discussion text in order to provide a semi-structured format
for our dialog segmentation algorithm.

The main idea of our segmentation algorithm is that the revision history of the discus-
sion page contains all necessary information that is needed to identify author and creation
point of each paragraph, which makes it possible to aggregate associated turn candidates
to actual turns.

117http://en.wikipedia.org/wiki/WP:TPO
118http://en.wikipedia.org/wiki/WP:TP
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Data: unsegmented text of a single discussion d in talk page tp
Result: list of paragraphs with metadata

1 parlist ←split d at EOL ; /* identify paragraphs */

/* find creation point of each paragraph */

2 foreach paragraph p in parlist do
/* check all talk page revisions starting with the oldest */

3 for rev ← tp.oldest to tp.newest do
4 if rev contains p then /* String matching */

/* we found the revision of origin for p */

5 p.author = rev.author ; /* collect metadata */

6 p.timestamp = rev.timestamp;
7 p.revisionid = rev.revisionid ;
8 break; /* goto next paragraph */

9 end
10 end
11 end
12 return parlist

Figure 6.3: Identification of paragraph creation points with forward checking.

We now introduce a naive algorithm which implements the basic idea of this approach,
but makes several simplifying assumptions. After that, we identify the problems of the
naive algorithms and generalize the simplifications.

Naive Algorithm with Forward Checking. For the naive algorithm, we start by sequen-
tially searching the revision history of the discussion page once for each paragraph to find
the revision in which the paragraph first appeared. We define this revision to be the revi-
sion of origin of that paragraph. The search always moves forward in time, starting with
the first (oldest) revision of the discussion page. The paragraph identification is achieved
with a simple string matching technique, i.e. the algorithm checks if the current Talk page
revision contains the paragraph as a substring. Having identified the revision of origin for
each paragraph, we can retrieve the corresponding author, creation point and revision id
from the revision metadata. Assuming that each revision produces exactly one turn, i.e.
all paragraphs created in a single revision belong to the same turn, we can aggregate all
paragraphs with identical revision IDs to single turns and thus retrieve the overall turn
structure of the discussion. Figure 6.3 shows the pseudocode for the naive version of the
paragraph creation point identification algorithm.

While this naive version illustrates the main idea behind our revision based segmenta-
tion approach, it makes several simplifying assumptions that first have to be generalized in
order to make the approach applicable to real world problems.
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Data: unsegmented text of a single discussion d in talk page tp
Result: list of paragraphs with metadata
/* Initialize paragraphs */

1 parlist ←split d at EOL ; /* identify paragraphs */

2 foreach paragraph p in parlist do
3 p.startIndex = start position in Talk page;
4 p.endIndex = end position in Talk page;
5 p.contributor = last contributor to Talk page;
6 p.timestamp = timestamp of latest revision of Talk page;
7 end
/* find creation point of each paragraph */

8 foreach paragraph p in parlist do
/* check all talk page revisions starting with the newest */

9 for rev ← tp.newest to tp.oldest do
10 foreach DiffAction da in rev do
11 if da occured within limits of p then

/* p was changed for the first time. update metadata of p and

move to next paragraph */

12 p.author = rev.author ;
13 p.timestamp = rev.timestamp;
14 p.revisionid = rev.revisionid ;
15 break; goto next paragraph;
16 else

/* p was not changed. recalculate position of p according to the

changes made on the Talk page */

17 update indexes of p according to da;
18 end
19 end
20 end
21 end
22 return parlist

Figure 6.4: Identification of paragraph creation points with backward checking.
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Backward Checking. One of the simplifications of the naive algorithm is the utilization
of string matching for finding the revision of origin of a given paragraph. While this is a
viable approach for longer paragraphs, which are most likely unique in the whole revision
history, the probability of identifying an incorrect revision of origin increases with decreas-
ing length of the paragraph text. In order to solve this issue, we reverse the processing order
of the revision history and start the process with the newest revision of the Talk page. We
then backtrack the history revision by revision and check whether the monitored para-
graph has been altered. This can be achieved without relying on string matching with the
help of the so-called DiffAction information provided by the WRT-API (see appendix A.1).
These DiffActions identify all changes that have been made in a single revision of a wiki
page and provide the span of the change with start and end index in the page. This way,
we are able to determine whether any of these changes occur within a particular paragraph
by comparing the begin and end indexes of DiffAction and paragraph. The process is con-
tinued until we find the first revision in which the monitored paragraph is either altered
or disappears completely, which indicates that we found the creation point of the para-
graph. Figure 6.4 shows the pseudocode of the creation point identification algorithm with
backward checking.

Vandalism. Backward checking introduces another problem that was not relevant in the
naive setup. Similar to Wikipedia articles, Talk pages can be subject to vandalism and ma-
licious edits. While there are many possible categories of malicious edits to wiki pages, an
extreme example best illustrates the impact of vandalism on our algorithm. Page blanking is
defined as the action of removing all content from a page or replacing all content on a page
with a newmessage. These acts of vandalism are usually repaired very quickly by someone
reverting the malicious change and restoring the previous version of the Talk page. How-
ever, such page blanking acts will cause the segmentation algorithm to falsely select the
malicious revision as the revision of origin for any paragraph created before the vandalism
act. Therefore, we have to account for cases of vandalism by identifying malicious edits.
Since we found that vandalism is reverted much faster on discussion pages than in articles,
we do not employ any additional vandalism detection heuristics. We rather check whether
a change to the currently monitored paragraph is reverted shortly afterwards within a so-
called lookahead window , i.e. within the next n revisions after the change. In other words,
we identify cases of paragraph blanking with a n-revision lookahead. If we found such a
case, we assume an act of vandalism and disregard the malicious change. We then pro-
ceed with the search for the revision of origin for the monitored paragraph. While smaller
lookahead windows potentially cause incorrect decisions of the algorithm, larger windows
will increase the processing time. On the SEWD corpus, the algorithm was able to detect
all cases of paragraph blankings with a lookahead windows of n = 10, while we had to
increase the value to n = 20 on the EWD corpus.
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Edit-Turn Equivalence. The final simplification of the naive approach that we have to ad-
dress is the edit-turn equivalence. We assumed that one revision equals one turn. However,
this is not always the case. While in many cases we actually do have a 1:1 correspondence
between turns and revisions, we also find caseswith 1:N,M:1 or evenM:N ratios. Thismeans,
that a single turn was written in many revisions, multiple turns in one revision or multiple
turns in multiple revisions. We have to consider these cases in the paragraph aggregation
part of the algorithm.

In order to account for turns that have been written in multiple revisions, we regard all
consecutive revisions by the same user within a window of 10 minutes as belonging to the
same turn. The value of this time window was derived experimentally and turned out to
be the optimal value for our experiments. We evaluated the threshold in a manual review
of all incorrectly segmented turns both in the SEWD and EWD corpus and found that the
same threshold worked equally well in both cases.

Multi turn edits, i.e. revisions in which a user contributes to multiple discussion threads
on a single page, are not a problem for the revised algorithm, since the paragraph-based
revision backtracking approach captures these cases equally well.

Indentation. Even though we do not regard indentation as a reliable indicator for the
conversational structure, we nevertheless record this information for every turn in order
to gain further insights into the relationships between the contributions. According to the
Talk page conventions119, indentation should be used to indicate which part of the conver-
sation a contribution replies to. We store this information as additional metadata for the
turn. In cases where a single turn contains indentation as a means of formatting the contri-
bution rather than indicating a reply, the indentation level of the least indented paragraph
is used for the whole turn.

In-Text Replies. In the case of in-text replies (see figure 6.2), users insert their messages
within an existing contribution. We can consider this to be an act of splitting the origi-
nal contribution into smaller parts or, in other words, partial turns , to which the inserted
messages reply. As long as the original contribution is split along paragraph boundaries,
our backward checking algorithm will still find the correct creation points for each par-
tial turn. However, if the split is performed somewhere in the middle of a paragraph, we
have to account for this fact when monitoring the indexes of the paragraphs. After each
index recalculation (line 17), we have to check if the newly calculated span still starts and
ends at paragraph boundaries. If this is no longer the case, we have to expand the span to
the paragraph boundaries it is enclosed in. Then, the algorithm will be able to perform as
expected.

119http://en.wikipedia.org/wiki/WP:INDENT
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Discussion Archives. As discussed in chapter 3.5, old discussion threads can be archived
in order to prevent Talk pages from getting too long. Depending on the configuration of the
particular Talk page, the old content is either copied to a new or already existing archive
page before being removed from themain page (cut-and-paste procedure) or the whole Talk
page is renamed and thus transformed into an archive and a new main Talk page is created
(move procedure). In the latter case, the segmentation algorithm works as expected, since
the revision history remains unchanged on the same page as the content, i.e. the renamed
archive page. In the case of the cut-and-paste procedure, the revision history related to
the copied content remains on the main Talk page. Consequently, the algorithm has to use
the revision history of the main page starting at the point in time when the content was
archived. This point in time can be retrieved from the revision history of the archive page.
Since there is no explicit flag indicating the archiving strategy, we initially assume that the
move procedure has been employed. If the algorithm fails upon segmenting the page, we
automatically switch to the cut-and-paste mode.

6.4.1.3 Evaluation of the Segmentation Approach

In the following, we first evaluate the performance of the segmentation approach in terms
of its time complexity and then proceed with an empirical evaluation of its accuracy on the
SEWD and the EWD corpus.

Performance Estimation. The main computational effort of the segmentation algorithm
lies in the identification of the paragraph creation points.

The naive forward checking algorithm requires, on average, p ∗ 0.5r string matches for
p paragraphs and r Talk page revisions. If the Talk page contains the history of archived
content, these revisions have to be unsuccessfully searched for every paragraph, since the
algorithm always starts the search with the oldest revision.

The backward checking algorithm requires p(x ∗ r) check and update operations.120 If
the Talk page does not contain any archived revisions, x is 0.5 like in the case of forward
checking, because, on average, we have to search half of the history. If any archived revi-
sions are contained in the history of the page, x will be smaller than 0.5, since the backward
checking algorithmwill never enter the part of the revision history with archived revisions.
However, compared to the naive approach, the check and update operations are computa-
tionally more complex than string matching. Therefore, the backward checking algorithm
will only be faster in cases with many archived discussion threads using the cut-and-paste
procedure and thus resulting in smaller values of x .

120The check and update operations have to be carried out for each DiffAction in a revision. Since this number
is, on average, small, we handle this as a fixed operation. The initialization of the paragraphs in the begin-
ning does not significantly affect the overall runtime, since the properties of every paragraph are assigned
with fixed values.
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Paragraph aggregation into turns can be achieved in a single iteration over all processed
paragraphs if they are first sorted according to creation time. The handling of in-text replies
increases the complexity of the check and update operations of the backward checking
algorithms, since in-paragraph splits have to be handled as described above. However, in
practice, the operations do not affect the overall runtime significantly, since the cases of
in-text replies are infrequent compared to standard replies.

Empirical Evaluation of Segmentation Accuracy We evaluated the accuracy of the final
segmentation algorithm with backward checking both for the Simple English Wikipedia
and the English Wikipedia. We manually analyzed all Talk pages in the SEWD corpus and
the EWD corpus for segmentation errors as part of the annotation process described in
section 6.5.

In the case of the Simple English Wikipedia, we evaluated on a per-turn basis, which
means that each turn was judged individually for the acceptability of its boundaries and
the correctness of the associated metadata. For the gold standard of the corpus (see sec-
tion 6.5.2), any turns with segmentation errors were excluded. Overall, 94% of the 1450
turns were correctly segmented.

An analysis of the incorrectly segmented turns showed twomajor sources of error. First,
the assumption that turns boundaries always coincide with paragraph boundaries (i.e. turns
are single or multiple paragraphs) did not always hold true. There are rare cases in which
this convention is disregarded by the users and new turns are not started in a new line.
Second, the algorithm expects any cases of vandalism to be reverted within a certain time
window after it occurred. There are both cases in which the revert is done outside of the
lookahead window of our algorithm or in which no revert is performed at all. These cases
will not be detected by our approach. Minor sources of error were bot interventions, i.e.
automatic edits performed by maintenance scripts, which could not always be handled cor-
rectly. Finally, there are cases in which the algorithm fails to keep track of the paragraph
spans after recalculating the begin and end indexes according to the performed DiffAc-
tions. This is probably caused by inconsistencies in the WRT-API and not an error in the
segmentation algorithm.

For the larger EWD corpus, we evaluated the segmentation accuracy on a per-thread
basis, which means that each thread with any segmentation error is immediately marked
as erroneous and not further evaluated. This was done in order to exclude whole threads
from the gold standard rather than removing individual turns. 8% of all threads have been
marked erroneous by three annotators who were asked to evaluate the segmentation accu-
racy (see also section 6.5.2), while 31% of all threads have been marked with an error tag by
at least one annotator. Upon later examination, we found that one of the annotators made
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Table 6.3: Descriptive statistics
for the Simple English Wiki-
pedia (Apr 6th 2011) and the En-
glish Wikipedia (Apr 5th 2011),
from which the SEWD and the
EWD corpora have been ex-
tracted. Turn counts have not
been determined for the English
Wikipedia due to the extensive
runtime of the dialog segmenta-
tion process.

Simple English English

Articles 69 900 3 477 738
Non-empty Talk pages 5 783 3 353 180
Discussion topics 7 560 2 901 532
Turns 14 335 N/A
Talk pages with > 3 turns 683 N/A

a systematic error in judging the segmentation accuracy. Therefore, we consider only the
ratings of the other two annotators and obtain an overall thread-error-rate of 10%121.

Besides the fact that longer threads and older discussion pages with a more extensive
revision history were more frequently subject to parse errors than short discussions and
newly created Talk pages, the interference of automatic maintenance scripts (bots) caused
the algorithm to falsely identify turn boundaries on some occasions. Beyond that, no sys-
tematic error sources could be identified among the segmentation errors.

6.4.2 Data Sampling

In order to sample a well balanced set of documents for each corpus, we defined selec-
tion criteria that reflect both the peculiarities of the respective Wikipedia from which the
documents were sampled and the task at hand, i.e. the analysis of coordination efforts for
article improvement. Due to the different characteristics of the Simple English Wikipedia
and the English Wikipedia, the selection criteria differ between the SEWD corpus and the
EWD corpus.

6.4.2.1 Simple English Wikipedia

Due to the limited size of the Simple English Wikipedia (see table 6.3), its smaller commu-
nity and consequently its lower discussion activity, we chose the discussion length as the
only selection criterion for Talk pages to be included in the corpus. From a JWPL database
based on a Wikipedia data dump from Apr 6th 2011, we first extract all Talk pages and
segment the dialog as described in section 6.4.1. From the set of segmented Talk pages, we
discard all instances with less than four turns, which results in a remaining set of 683 Talk
pages. We then analyze the distribution of turn counts per discussion page in the remain-
ing set of pages and manually define three classes: (i) discussion pages with 4–10 turns, (ii)
pages with 11–20 turns, and (iii) pages with more than 20 turns. We decided to explicitly

121Thread-error-rate is defined as the percentage of threads with at least one incorrectly segmented turn.

130



6.4. Wikipedia Article Discussion Corpora

Distinguished articles Featured Articles
Good Articles

Flawed articles Incomplete articles or articles with lack of detail (CRITCOMPL)
– templates from category Cleanup/Expand and add
Articles with lack of accuracy, correctness or neutrality (CRITACC)
– templates from category Cleanup/Contradiction and confusion
– templates from category Cleanup/Neutrality and factual accuracy
– template bad summary
Articles with deficiencies in language or style (CRITLANG)
– templates from category Cleanup/Style of writing
– templates from category Cleanup/Translation
Articles with deficiencies in structure or layout (CRITSTRUCT)
– templates from category Cleanup/Structure, formatting and sections
– templates from category Cleanup/Move
– templates from category Cleanup/Merge
– templates from category Cleanup/Split
Articles with unsuitable content (CRITSUIT)
– templates from category Cleanup/Potentially unwanted content
– templates from category Cleanup/Importance and notability
– templates from category Cleanup/Context and detail
Articles with insufficient sources or references (CRITAUTH)
– templates from category Cleanup/Verifiability and sources

Neutral articles Articles with none of the above characteristics

Figure 6.5: Selection criteria for Talk pages in the EWD corpus based on the quality status of the
associated articles. The template categories are explained in chapter 5 while the templates used in
this setup are listed in appendix B.2. The labels in parentheses refer to the corresponding criticism
class as defined in the annotation scheme used to annotate the EWD corpus (see section 6.5.1.2).

define these three classes, since random sampling from a small set of documents might ex-
clude rare document types, i.e. in our case longer discussions. We then randomly extracted
50 discussion pages from class (i), 40 pages from class (ii) and 10 pages from class (iii). This
way, we obtain 100 Talk pages with a total of 1,450 turns. After removing all segmentation
errors, 1,367 turns remain for annotation.

6.4.2.2 English Wikipedia

Since the English Wikipedia, as the biggest of all language versions, offers a much larger
amount of data (see table 6.3), we are able to define more complex selection criteria for the
documents in the EWD corpus. Rather than only taking the discussion length into account,
we also include the quality status of the articles associated with the discussion pages into
the set of criteria.
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From a JWPL database based on a Wikipedia data dump from Apr 4th 2011, we first
extract all Talk pages with at least one discussion and with a total text length between
1,000 and 40,000 characters122. We further categorize the retrieved pages according to the
quality status of the associated article, which can either be distinguished , flawed , or neutral .

Distinguished articles: Are marked as featured or good articles (see section 4.3)
Flawed articles: Contain cleanup templates that indicate particular quality flaws which
correspond to the criticism categories that we introduce in the annotation scheme (see
section 6.5.1.2). The concept of quality flaws in Wikipedia has been discussed in chapter 5.

Neutral articles: Are neither distinguished nor flawed123.

For each of these categories, we sample a random set of 72 Talk pages with a balanced
distribution of different discussion sizes124 resulting in a total of 216 Talk pages. After
segmenting the pages with the algorithm described in section 6.4.1, we manually remove all
pages with segmentation errors and obtain a corpus of 200 pages with 8,531 turns in 2,689
topics for further annotation. Figure 6.5 gives a more detailed overview of the selection
criteria for the EWD corpus.

6.5 Annotating Wikipedia Article Discussions

In this section, we first introduce the two annotation schemes designed for the SEWD and
the EWD corpus as well as a mapping between the two. We then describe the annotation
process and analyze the annotations in both corpora.

6.5.1 Annotation Schemes for Article Discussions

In section 6.2, we have defined dialog acts as specialized speech acts that identify the func-
tion of an utterance in the context of a particular dialog. Rather than performing a fine-
grained analysis of the discourse structure in Wikipedia Talk page conversations, we are
more interested in the types of quality assessment issues and the coordination efforts for
article improvement that are reflected in each contribution. Dialog acts are a suitable tool
for this kind of analysis. We chose to perform the dialog analysis on the turn level rather
than on the utterance level to avoid the added complexity of an additional utterance seg-
mentation step which is an additional source of noise.
122Since the turn extraction for all discussion pages would demand a substantial amount of time, we preselect

candidate pages according to their overall text length (excluding markup). Turn segmentation is performed
at a later stage.

123While neutral articles do not contain any templates defined in the flawed category, they might still exhibit
unmarked flaws or contain other types of cleanup templates which are not considered in this setup.

124We split the range between 1,000 characters and 40,0000 characters per article into six equidistant bins and
categorized the articles accordingly. We then sampled the same number of articles from each bin.
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Since a single turn may consist of several utterances, it is consequently bound to com-
prise multiple dialog acts. Therefore, we designed the annotation study as a multi-label
classification task, i.e. the annotators can assign one or more labels to each annotation unit
while each label is chosen independently. This furthermore reflects the fact that even a
single utterance might perform several acts at the same time. For example, the author of
the turn

“This part needs to be extended. I will have a look into it later.”

identifies a lack of detail or missing information in the article and, at the same time, self-
commits to improving the article later.

The annotation schemes described in the following subsections have been developed in
succession, whereas the EWD schemes constitutes a refinement of the SEWD scheme based
on the lessons learned in our initial experiments.

6.5.1.1 Simple English Wikipedia

In order to define a scheme for annotating the SEWD corpus, we manually analyzed a ran-
dom set of thirty Talk pages from the Simple English Wikipedia to identify the types of
article deficiencies that are discussed and the way article improvement is coordinated. We
first identified four high level categories that need to be considered in an analysis of the
information quality management process.

Article Criticism: Identifies the types of deficiencies in the article. The criticism can refer
to the article as a whole or to individual parts of the article.

Explicit Performative: Comprises announcements, reports or suggestions of editing
activities.

Information Content: Captures the purpose of the communication. A contribution can be
used to communicate new information to others, to request information , or to suggest
changes to established facts.

Interpersonal: Refers to the attitude that is expressed towards other participants in the
discussion and/or their comments.

Within each of these four categories, we identified all related speech acts that occurred in
the Talk page sample more than once. Moreover, we analyzed the instructions regarding
article quality discussions in the Wikipedia Manual of Style in order to identify additional
labels for each category. The scheme was iteratively revised on another set of 20 random
Talk pages to assure the generalizable nature of the labels identified in the first iteration.
The resulting final tagset consists of 17 labels which are listed in table 6.4 along with their
respective definitions and an example turn from the SEWD corpus.
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Label Description Example

Article Criticism

CM Content incomplete or lack-
ing detail

It should be added (1) that voters may skip preferences, but (2) that
skipping preferences has no impact on the result of the elections.

CW Lack of accuracy or correct-
ness

Kris Kringle is NOT a Germanic god, but an English mispronuncia-
tion of Christkind, a German word that means “the baby Jesus”.

CU Unsuitable or unnecessary
content

The references should be removed. The reason: The references are too
complicated for the typical reader of simple Wikipedia.

CS Structural problems Also use sectioning, and interlinking
CL Deficiencies in language or

style
This section needs to be simplified further; there are a lot of words
that are too complex for this wiki.

COBJ Objectivity issues This article seems to take a clear pro-Christian, anti-commercial view.
CO Other kind of criticism I have started an article on Google. It needs improvement though.

Explicit Performative

PSR Explicit suggestion, recom-
mendation or request

This section needs to be simplified further

PREF Explicit reference or pointer Got it. The URL is http://www.dmbeatles.com/history.php?year=1968
PFC Commitment to an action in

the future
Okay, I forgot to add that, I’ll do so later tonight.

PPC Report of a performed ac-
tion

I took and hopefully simplified the ”[[en:Prehistoric music|Prehistoric
music]]” article from EnWP

Information Content

IP Information providing “Depression” is the most basic term there is.
IS Information seeking So what kind of theory would you use for your music composing?
IC Information correcting In linguistics and generally speaking, when Talking about the lexi-

con in a language, words are usually categorized as ’nouns’, ’verbs’,
’adjectives’ and so on. The term ’doing word’ does not exist.

Interpersonal

ATT+ Positive attitude towards
other contributor or
acceptance

Thank you.

ATTP Partial acceptance or partial
rejection

Okay, I can understand that, but some citations are going to have to
be included for [[WP:V]].

ATT- Negative attitude to-
wards other contributor or
rejection

Now what? You think you know so much about everything, and you
are not even helping⁈

Table 6.4: Annotation scheme for the dialog act classification in Wikipedia discussion pages with
examples from the SEWD Corpus. Some examples have been shortened to fit the table.
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Scope Label Description

ERROR Segmentation Errors
REFOBJ-PART Comment about specific section of the article
REFOBJ-WHOLE Comment about the whole articleTopic
REFOBJ-META Meta comment not directly referring to article

Article Criticism

CRITCOMPL Information is incomplete or lacks detail
CRITACC Lack of accuracy, correctness or neutrality
CRITLANG Deficiencies in language and style
CRITSUIT Content not suitable for an encyclopedia
CRITSTRUCT Deficiencies in structure, organization or visual appearance
CRITAUTH Lack of authority

Self Commitment

ACTF Commitment to action in the future
ACTP Report of past action

Requests

REQEDIT Request for article edit
REQMAINT Request for admin or maintenance action

Interpersonal

ATTPOS Positive attitude

Turn

ATTNEG Negative attitude

Table 6.5: Revised annotation scheme for the dialog act classification in the EWDCorpus. Topic level
labels are assigned to whole discussion threads while turn level labels are assigned to individual
turns.

6.5.1.2 English Wikipedia

Based on the results of the inter-annotator analysis on the SEWD corpus that is discussed
in section 6.5.3 and the feedback we received from the annotators, we revised the SEWD
scheme before applying it to the EWD corpus.

Most notably, we expanded the annotation scheme with an additional topic scope layer
in addition to the turn scope that we already defined for the SEWD experiments. In other
words, in addition to the dialog act labels on the turn level, we add an additional annotation
layer on the topic level that refers to whole discussion topics. The topic scope labels are
intended to provide background information about whole discussion threads. The ERROR
label marks segmentation or parse errors in the corpus. If any turn is incorrectly parsed or
segmented, the whole thread is marked with an error label and potentially rejected from
inclusion in the gold standard. Furthermore, the multi-class REFOBJ label defines the point
of reference of the discussion topic. A discussion can either refer to the article as a whole
(REFOBJ-WHOLE), a particular section of the article (REFOBJ-PART) or to external content
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PSR

PREF

PFC

PPC
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CW

CL

CS

CM

CU

COBJ
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ATT-
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Turn Level
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Figure 6.6: Mapping between the SEWD and EWD annotation schemes. Dashed lines indicate partial
equivalence of labels. Red borders indicate labels without equivalence in the other scheme.

outside of Wikipedia or an off-topic (REFOBJ-META). For example, a discussion whether the
articleComputational Linguistics should bemergedwithNatural Language Processing refers
to the article(s) as a whole. The request to improve the lead section of this article would
refer to a particular part. Discussions about current events in natural language processing
or general remarks about Wikipedia policies would be regarded as meta discussions. The
choice between the three points of reference is mutually exclusive, hence the REFOBJ label
was defined as a multi-class label instead of three binary labels. That is, a discussion topic
can either be marked with REFOBJ-WHOLE, REFOBJ-PART or REFOBJ-META.

In particular, the very unspecific CO label was removed due to very low inter-annotator
agreement. We furthermore merged the PREF label with the PSR label into a single REQEDIT
label, since the two have frequently been confused. We additionally introduced the REQ-
MAINT label indicating requests for maintenance activities that can only be carried out by
privileged users such as administrators.

All labels from the Information Content category have been discarded, because the IP la-
bel has shown to be too unspecific while the other labels suffered either from low frequency
or from low inter-annotator agreement. We finally removed the ATTP label that originally
expressed partial agreement between the users in a discussion. Instead, we defined partial
agreement to be represented by assigning both the labels for positive and negative attitude.
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To improve the overall inter-annotator agreement and to take the increased complex-
ity of the longer discussions into account, we created a more comprehensive annotator’s
manual that was particularly tailored towards providing guidelines for unclear cases. An
abridged version of this manual can be found in appendix B.2.

Figure 6.5 shows the revised annotation scheme for the EWD corpus while figure 6.6
demonstrates how both annotation schemes can be mapped to each other and which of the
labels do not have an equivalent in the other scheme.

6.5.2 Corpus Annotation Process and Gold Standard Creation

We use theMMAX2 annotation tool (Müller and Strube, 2006) for annotating both the SEWD
and the EWD corpus. Therefore, we convert the segmented Talk pages into theMMAX2 XML
format. For the SEWD corpus, we define all turn boundaries as markables, i.e. units anno-
tatable according to the predefined annotation scheme, whereas we define two markable
levels for the EWD corpus based on turn and topic boundaries.

The screenshot in figure 6.7 shows the MMAX2 annotation tool being used for labeling
an in-text reply, i.e. a turn inserted into an existing turn by another user. The inserted turn
is highlighted in yellow marking it ready for annotation while the turn in which the in-text
reply was inserted becomes a discontinuous turn and is marked in gray. Both parts of the
discontinuous turn are still connected and can be annotated as one unit.

Figure 6.8 shows the topic annotation screen. All turns in the topic are highlighted
while the topic metadata is displayed in the annotation window.

Gold Standard Creation. The SEWD gold standard was created by a third expert anno-
tator who manually consolidated the annotation of the two trained annotators. This con-
solidation process was carried out within the MMAX2 system that was already used in the
annotation process.

In order to improve the consolidation process for the bigger EWD corpus and make it
easier to handle a larger amount of annotations, we designed a dedicated expert support
system. We first read the annotations of both annotators into a UIMA pipeline and store
them in individual annotation layers in the same CAS125. In a second step, we remove all
discussion threads that have been marked with an ERROR label by any annotator. While
this potentially discards usable data, we achieve the highest possible accuracy and reliabil-
ity. This way, we obtain an overall number of 4,884 turns not marked with any error. In
a third step, we identify all cases of disagreement between the annotators and mark them
as separate annotations in the CAS. Cases with perfect agreement between the annotators
are directly accepted by the system thus rendering additional review by the expert unnec-

125Common Analysis Structure, the object based data structure of the UIMA framework that holds both the
data and any standoff annotations.
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Figure 6.7: Annotation of a Talk page from the EWD corpus on the turn level in MMAX2. The
currently selected turn is highlighted in yellow. A blue line indicates a reply to a previous turn. In
this example, the yellow turn is an inserted reply which was placed within a previous turn (marked
in gray) that was thereby split in two parts. The turn-level labels from the annotation scheme are
displayed on the right.

Figure 6.8: Annotation of a Talk page from the EWD corpus on the topic level in MMAX2. All turns
belonging to the currently selected topic are highlighted in yellow. The labels from the annotation
scheme are displayed on the right.

138



6.5. Annotating Wikipedia Article Discussions

Figure 6.9: UIMA CasEditor as the front end of the expert support system for creating the EWD gold
standard.

essary. Using the Apache UIMA CasEditor126, the expert annotator can then navigate the
disagreement annotations, review the annotator decisions, and enter the final gold standard
labels. The resulting gold standard corpus can finally be saved in the UIMA XMI127 format,
which allows further processing with the UIMA framework.

6.5.3 Inter-Annotator Agreement

To evaluate the reliability of our datasets, we perform a detailed inter-rater agreement
study. For measuring the agreement of the individual labels, we report the observed agree-
ment, Kappa statistics (Carletta, 1996), and F1-scores. The latter are computed by treating
one annotator as the gold standard and the other one as predictions (Hripcsak and Roth-
schild, 2005). The detailed scores for the SEWD corpus along with descriptive statistics
regarding label assignments are shown in table 6.6 while the EWD corpus is summarized
in table 6.7. A breakdown of the dialog act label assignments per topic is furthermore pre-
sented in table 6.8.

For the SEWD corpus, the average observed agreement across all labels is ̄PO = 0.94.
The individual Kappa scores largely fall into the range that Landis and Koch (1977) regard
as substantial agreement , while three labels are above the more strict 0.80 threshold for
126http://uima.apache.org/downloads/releaseDocs/2.3.0-incubating/docs/html/tools/tools.html#ugr.tools.

ce accessed on Feb 20, 2014
127http://uima.apache.org/downloads/releaseDocs/2.3.0-incubating/docs/html/references/references.html#

ugr.ref.xmi accessed on Feb 20, 2014
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Annotator 1 Annotator 2 Inter-Annotator Agreement Gold Standard
Label N Percent N Percent NA1∪A2 PO κ F1 N Percent

Article Criticism

CM 183 13.4% 105 7.7% 193 .93 .63 .66 116 8.5%
CW 106 7.8% 57 4.2% 120 .95 .52 .55 70 5.1%
CU 69 5.0% 35 2.6% 83 .95 .38 .40 42 3.1%
CS 164 12.0% 101 7.4% 174 .94 .66 .69 136 9.9%
CL 195 14.3% 199 14.6% 244 .93 .73 .77 219 16.0%
COBJ 27 2.0% 23 1.7% 29 .99 .84 .84 27 2.0%
CO 20 1.5% 59 4.3% 71 .95 .18 .20 48 3.5%

Explicit Performative

PSR 458 33.5% 351 25.7% 503 .86 .66 .76 406 29.7%
PREF 43 3.1% 31 2.3% 51 .98 .61 .62 45 3.3%
PFC 73 5.3% 65 4.8% 86 .98 .76 .77 77 5.6%
PPC 357 26.1% 340 24.9% 371 .97 .92 .94 358 26.2%

Information Content

IP 1084 79.3% 1027 75.1% 1135 .89 .69 .93 1070 78.3%
IS 228 16.7% 208 15.2% 256 .95 .80 .83 220 16.1%
IC 187 13.7% 109 8.0% 221 .89 .46 .51 130 9.5%

Interpersonal

ATT+ 71 5.2% 140 10.2% 151 .94 .55 .58 144 10.5%
ATTP 71 5.2% 30 2.2% 79 .96 .42 .44 33 2.4%
ATT- 67 4.9% 74 5.4% 100 .96 .56 .58 87 6.4%

Table 6.6: Label frequencies and inter-annotator agreement for the SEWD corpus. NA1∪A2 denotes
the number of turns that have been labeled with the given label by at least one annotator. PO de-
notes the observed agreement.

reliable annotations (Artstein and Poesio, 2008). Furthermore, we obtain an overall pooled
Kappa (De Vries et al., 2008) of κpool = 0.67, which is defined as

κpool =
̄PO − ̄PE

1 − ̄PE

with
̄PO =

1
L

L


l=1

POl
, ̄PE =

1
L

L


l=1

PEl

where L denotes the number of labels, PEl the expected agreement and POl
the observed

agreement of the l th label. κpool is regarded to be more accurate than the averaged Kappa.
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Annotator 1 Annotator 2 Inter-Annotator Agreement Gold Standard
Label N Percent N Percent NA1∪A2 PO κ F1 N Percent

Article Criticism

CRITCOMPL 323 6.6% 404 8.3% 501 .94 .59 .62 373 7.6%
CRITACC 671 13.8% 603 12.4% 842 .92 .63 .64 605 12.4%
CRITLANG 233 4.8% 234 4.8% 330 .96 .57 .58 235 4.8%
CRITSUIT 457 9.4% 293 6.0% 579 .92 .41 .51 321 6.6%
CRIT-
STRUCT

311 6.4% 329 6.8% 467 .94 .51 .55 294 6.0%

CRITAUTH 306 6.3% 369 7.6% 498 .93 .49 .62 315 6.4%

Self Commitment

ACTF 244 5.0% 276 5.7% 352 .96 .63 .63 221 4.5%
ACTP 681 14.0% 652 13.4% 810 .94 .75 .71 551 11.3%

Requests

REQEDIT 518 10.6% 1024 21.0% 1178 .83 .39 .60 419 8.6%
REQMAINT 23 0.5% 79 1.6% 98 .89 .07 .10 13 0.3%

Interpersonal

ATTPOS 452 9.3% 529 10.9% 646 .94 .65 .66 457 9.4%
ATTNEG 200 2.9% 143 2.9% 254 .97 .50 .36 206 4.2%

Table 6.7: Label frequencies and inter-annotator agreement for the EWD corpus. NA1∪A2 denotes the
number of turns that have been labeled with the given label by at least one annotator. PO denotes
the observed agreement.

For assessing the overall inter-rater reliability of the label set assignments per turn , we
chose Krippendorff’s Alpha (Krippendorff, 1980) using MASI, a measure of agreement on
set-valued items, as the distance function (Passonneau, 2006). MASI accounts for partial
agreement if the label sets of both annotators overlap in at least one label. We achieved an
Alpha score of α = 0.75 on the SEWD corpus. According to Krippendorff, datasets with this
score are considered reliable and allow tentative conclusions to be drawn.

For the EWD corpus, the average observed agreement across all labels is ̄PO = 0.94,
similar to the results we achieved in the experiments on the SEWD corpus. However, the
individual Kappa scores are generally lower and largely fall into the range that Landis and
Koch (1977) regard as moderate agreement except for three labels on which the annotators
achieved substantial agreement. Overall, we obtain a pooled Kappa of κpool = 0.55. Krippen-
dorff’s Alpha measuring the turn-level agreement shows an overall value of α = 0.57 using
again MASI as a distance metric. Since the requests category held labels with particularly
low agreement, the reasons for which we discuss later in this section, we also calculated
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the overall agreement for all labels except REQMAINT and REQEDIT. After excluding the
requests category, we obtain an Alpha of α = 0.60 and a pooled Kappa of κpool = 0.59.

In the SEWD corpus, the CO label showed the lowest agreement of only κ = 0.18. The
label was supposed to cover any criticism that is not covered by a dedicated label. How-
ever, the annotators reported that they chose this label when they were unsure whether a
particular criticism label would fit a certain turn or not.

Labels in the interpersonal category all show agreement scores below 0.60. It turned
out that the annotators had a different understanding of these labels. While one annotator
assigned the labels for any kind of positive or negative sentiment, the other one used the
labels to express agreement and disagreement between the participants of a discussion.

In the EWD corpus, the two labels in the request category show the lowest agreement
of 0.39 (REQEDIT) and 0.07 (REQMAINT) respectively. The low agreement on the latter label
was mainly due to the very low frequency of the maintenance requests in the dataset. The
former label, on the other hand, was frequently not recognized in turns that both contain
a type of self commitment and a request or in which the request is less pronounced. For
example, the turn

Ok, I’ve restored the links, even the com is legitimate. Feel free to remove any link
that you think is spam, but please explain. Thanks. [[User:Pmmaster|Pmmaster]]
23:17, 19 July 2007 (UTC)

should have both been marked with an ACTP label, due to the restored links, and with a
REQEDIT label, due to the suggestion to review the list and remove any links that do not fit.
Cases like this, with more subtle requests, have often not been assigned correctly with this
label. Furthermore, annotator 2 had the tendency to falsely interpret ordinary questions
as edit requests thus causing twice as many assignments of REQEDIT labels as annotator 1
and many false positives.

The relatively high inter-annotator agreement on the assignment of the ACTP label was
due to the clear lexical cues associated with this category. The annotators reported that
they were mainly looking for terms like I edited , I removed , or I revised to decide whether
or not to assign this label. This also explainswhy the prediction performance of themachine
learning classifier described later in this chapter is the highest for this label. Interestingly,
the assignment of the similar ACTF label, which indicates future commitment, could less
reliably be decided based on lexical cues.

A common problem for all labels in both corpora were contributions with a high degree
of indirectness and implicitness. Indirect contributions have to be interpreted in the light
of conversational implicature theory (Grice, 1975), which requires contextual knowledge
for decoding the intentions of a speaker. For example, the message

Is population density allowed to be n/a?
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has the surface form of a question. However, the context of the discussion revealed that
the author tried to draw attention to the missing figure in the article and requested it to be
filled or removed. The annotators rarely made use of the context, which was a major source
for disagreement in the study.

Another difficulty for the annotators were long discussion turns. While, in the SEWD
corpus, the average turn consists of 42 tokens, the largest contribution in the corpus is
658 tokens long. In the EWD corpus, this problem was even more severe, with the aver-
age turn length being 108 tokens and the longest contribution to span 3,344 tokens. Turns
of this size can cover many topics and subjects and thus comprise many different dialog
acts, which increases the probability of disagreement among the annotators. As we have
mentioned before, we initially decided to annotate the corpus on the turn level since we
were mainly interested in a coarse-grained, turn-based dialog act analysis to identify the
types of quality assessment issues and the coordination efforts for article improvement that
are reflected in each contribution. Given the low inter-annotator agreement on discussions
with long turns, the markables should be reduced to smaller units in order to simplify the
individual decisions the annotators have to make and thus improve the overall agreement.
This can, after all, be addressed by going from the turn level to the utterance level in fu-
ture work, because individual utterances are much more limited in their goals and actions
than whole turns, which makes consistent annotation easier. This, however, will involve
additional efforts for discourse parsing, because the turns have further be segmented into
utterances, which introduces additional noise to the already error prone parsing process
that we introduced in this chapter.

A comparison of our results with the agreement reported for other datasets shows that
the reliability of our annotations lies well within the field of the related work. Bender et al.
(2011) carried out an annotation study of social acts in 365 discussions from 47 Wikipedia
Talk pages. They report Kappa scores for thirteen labels in two categories ranging from
0.13 to 0.66 per label. The overall agreement for each category was κ = 0.50 and κ =
0.59, respectively, which is considerably lower than our κpool = 0.67, but comparable to
the agreement our annotators achieved on the EWD corpus. Kim et al. (2010b) annotate
pairs of posts taken from an online forum. They use a dialog act tagset with twelve labels
customized for modeling troubleshooting-oriented forum discussions. For their corpus of
1,334 posts, they report an overall Kappa of 0.59. Kim et al. (2010a) identify unresolved
discussions in student online forums by annotating 1,135 posts with five different speech
acts. They report Kappa scores per speech act between 0.72 and 0.94. Their better results
might be due to a more coarse grained label set.
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6.5.4 Corpus Analysis

In the following, we provide an analysis of both the SEWD and the EWD gold standard (see
section 6.5.2).

6.5.4.1 SEWD Corpus

The SEWD corpus contains 313 discussions consisting of 1, 367 turns by 337 users. The
average length of a turn is 42 words. 208 of the 337 contributors are registered Wikipedia
users, 129 wrote anonymously. On average, each contributor wrote 168 words in 4 turns.
However, there was a cluster of 16 people with ≥ 20 contributions.

Table 6.6 shows the frequencies of all labels in the SEWD corpus. The most frequent
labels are information providing (IP), requests (PSR) and reports of performed edits (PPC). The
IP-label was assigned to more than 78% of all 1367 turns, because almost every contribution
provides a certain amount of information. The label was only omitted if a turn merely
consisted of a discussion template but did not contain any text or if it exclusively contained
questions.

More than a quarter of the turns are labeled with PSR and PPC, respectively. This indi-
cates that edit requests and reports of performed edits are the main subject of discussion.
Generally, it is more common that edits are reported after they have been made than to
announce them before they are carried out, as can be seen in the ratio of PPC to PFC labels.
The number of turns labeled with PSR is almost the same as the number of contributions
labeled with either PPC or PFC. This allows the tentative conclusion that nearly all requests
potentially lead to an edit action. As a matter of fact, the most common label adjacency
pair128 in the corpus is PSR→PPC, which substantiates this assumption.

Article criticism labels have been assigned to 39.4% of all turns. Almost half (241) of
the labels from this class are assigned to the first turn of a discussion. This shows that it is
common to open a discussion in reference to a particular deficiency of the article. The large
number of CL labels compared to other labels from the same category is due to the fact
that the Simple English Wikipedia requires authors to write articles in a way that they are
understandable for non-native speakers of English. Therefore, the use of adequate language
is one of the major concerns of the Simple English Wikipedia community.

6.5.4.2 EWD Corpus

The EWD corpus contains 1, 864 discussions consisting of 4, 923 turns by 2, 438 users. The
average length of a turn is 109 tokens. 1, 682 of the 2, 438 contributors are registered Wiki-
pedia users while 750 wrote anonymously. On average, each contributor produced 220
tokens in 2 turns while the user with the most contributions in the corpus produced 102

128A label transition A→ B is recorded if two adjacent turns are labeled with A and B, respectively.
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REFOBJ

Label WHOLE PART META

CRITCOMPL 43 330 –
CRITACC 62 539 4
CRITLANG 5 230 –
CRITSUIT 42 278 1
CRITSTRUCT 77 216 1
CRITAUTH 33 282 –
ACTF 29 189 3
ACTP 84 464 3
REQEDIT 56 363 –
REQMAINT 4 9 –
ATTPOS 83 373 1
ATTNEG 38 157 11

Total topics 130 1,687 47
Unlabeled topics 13 340 39

Table 6.8: Distribution of dialog acts in the
EWD corpus broken down according to the
scope of the topic they occur in as defined
by the REFOBJ label. It identifies if a dis-
cussion refers to the whole article (WHOLE),
a specific part of the article (PART) or to
content outside of Wikipedia (META). Un-
labeled topics do not contain any turns la-
beled with any dialog act label from our an-
notation scheme.

turns and a total of 17, 304 tokens. While, in the SEWD corpus, every turn received at
least one dialog act label due to the universal applicability of the labels in the information
content category, the EWD corpus contains only 2, 729 labeled turns. No dialog act labels
were applicable to the remaining 2, 194 turns. This was to be expected after redesigning
the annotation scheme since not every turn contributed to article quality assessment and
improvement activities.

Across all four high-level dialog act categories, criticism labels have been assigned most
frequently to turns with overall 1, 778 turns being marked with at least one of these labels.
Self commitments could be identified in 749 turns while 432 turns request either article edits
or maintenance activities. Finally, positive or negative sentiment or attitudes towards other
participants in the discussion are expressed in 655 turns. Table 6.7 shows the frequencies
of all individual labels in the EWD corpus.

Most of the discussion topics in the EWD corpus refer to a specific aspect of the asso-
ciated article as identified by the REFOBJ label. While 130 discussions refer to the article
as a whole, i.e. the concept represented by the article, 1, 687 discussions refer to specific
sections in the article. This reflects the expected usage of the Talk pages, since the work
coordination that can be observed there mainly focuses on small, fine-grained steps rather
than big picture discussions. 47 discussions are about topics not directly related to the ar-
ticle and mainly discuss general Wikipedia policies. Table 6.8 gives a breakdown of dialog
acts according to the scope of the topic they occur in.
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6.6 Automatic Prediction of Dialog Act Labels

As we have already discussed in section 6.5.1, dialog act classification is a multi label clas-
sification task. That is, given a turn t ∈ T and a set of dialog act labels C = {c1, c2, ..., cn}, we
want to label each turn t with L ⊂ C , where L is the set of relevant or true labels and |L| ≥ 1.
Each label is considered to be binary, thus we have |C | = 2. According to Tsoumakas and
Katakis (2007), multi label classification problems can be approached in two different ways,
either by adapting single label learning algorithms to directly support multi labeled training
data and thus incorporate label interdependencies in the training and classification process
(algorithm adaptation) or by decomposing the classification problem into multiple single
label problems (problem transformation). In our experience, decomposing the multi label
problem into individual binary classification problems is the superior solution for noisy
data and performs better than algorithms that tackle the multi label classification in its full
form. We therefore choose the problem transformation approach for our experiments. It
allows us to train individual classifiers for each label which can either be employed sepa-
rately or combined in an ensemble method (Fujino et al., 2008). The sequential nature of
the dialog will furthermore be explicitly reflected in the feature set.

In the following, we first describe the setup of our classification system, present the
features employed in our experiments and finally evaluate the performance of the classifiers
including an error analysis.

6.6.1 Experiment and System Setup

Similar to our approach in the quality flaw prediction experiments described in chapter 5,
we developed a UIMA-based (Ferrucci and Lally, 2004) text classification system using the
Weka data-mining software (Hall et al., 2009) as a downstream machine learning toolkit.
In contrast to the FlawFinder system, which is organized in several independent and self-
sustained processing tasks , the dialog act classification system consists of a single UIMA
pipeline containing all preprocessing and classification components.

Preprocessing. All necessary preprocessing steps have already been carried out during
the dialog segmentation process described in section 6.4.1. The discussions of the gold
standard corpus are already segmented into discussion topics, turns, sentences and tokens
and basic meta information about the contributors and their contributions are provided
in the corpus. Following the hybrid corpus approach described in section 6.4, additional
information can be accessed via the JWPL database containing the full Talk page revision
history as well as the history of the associated article.
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Classification Algorithms. For the classification task, we use three machine learning al-
gorithms from the Weka data-mining software that have proven to work particularly well
for similar tasks that we described in related work. We use a Naive Bayes classifier, J48, an
implementation of the C4.5 decision tree algorithm (Quinlan, 1992) and SMO, an optimiza-
tion algorithm for training support vector machines (Platt, 1998). We only employed the
default configurations for each machine learning algorithm as defined by the Weka soft-
ware and did not perform hyperparameter optimization since we were more interested in
the feature engineering aspects rather than tweaking the configurations of the algorithms.
However, we evaluate the performance of each learning algorithm separately on every di-
alog act label in order to identify the best classifier combination for the final ensemble
pipeline.

Handling Class Imbalance. Since the number of positive instances for each label is small
compared to the number of negative instances, we create a balanced dataset which contains
an equal amount of positive and negative instances. Therefore, we randomly select the
appropriate number of negative instances and discard the rest. This way, we avoid the
classifier to be biased towards the majority class. A similar effect can also be reached with
cost-sensitive learning (Ling and Sheng, 2010). However, we found that undersampling of
the majority class achieves similar results while improving the training speed and is also
superior to oversampling the minority class.

Feature Selection. We evaluated two different feature selection approaches to prune the
feature space and select the most meaningful features for each label, Information Gain
(Mitchell, 1997) and the χ 2 metric (Yang and Pedersen, 1997), but we did not see systematic
differences between the two. Even though we first attempted to select a suitable feature
selection approach separately for each label we finally decided to use χ 2 at all times. We
now give an overview of the feature types employed in our experiments.

6.6.2 Features

Since we expect lexical cues to be among the most prominent features for the dialog act
classification task, we employ token uni-, bi- and trigrams that occurred in at least three
different turns of the corpus. Similar to the flaw prediction experiments described in chap-
ter 5, we replace all links to external pages with a generic EXTERNALLINK label while we mark
wiki-internal links with an INTERNALLINK label. We furthermore perform stopword filtering
using the stopword list from the snowball stemmer129, which we augmented with punctu-
ation marks.

129http://snowball.tartarus.org/algorithms/english/stop.txt
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Dialog has a sequential nature, i.e. the probability of a particular turn being tagged
with a specific dialog act label depends on the labels of the previous turn and influences
the succeeding turn. This aspect can be accounted for by following a dedicated sequence
classification approach. Instead of restricting our system to sequence classifiers, we instead
chose to incorporate the sequential information on the feature level. To this end, each turn
is not only represented by the ngrams extracted from its own text but also includes the
ngrams of the previous and the next turn. This way, the preceding and succeeding turn
influences the label assignment of the given turn.

Since user discussions are likely to suffer from spelling mistakes, the quality and predic-
tive power of the lexical features can be improved by incorporating spelling error correction
in a preprocessing step before feature extraction. We did not include this in our system but
strongly suggest to do so in future work.

Besides lexical features, we included surface information, such as the length of the cur-
rent, previous and next turn (in tokens), temporal information, such as the time distance of
a turn to the previous and the next turn (in seconds), and positional information, such as
the position of a turn within the discussion, its indentation level and two binary features
indicating whether a turn references or is referenced by another turn. We assume that a
turn t2 references a preceding turn t1 if the indentation level of t2 is one level deeper than
that of t1.

Indentation and temporal distance to the preceding turn proved to be the best ranked
non-lexical features overall. Additionally, the turn position within the topic was a crucial
feature for most labels in the criticism class and for the label PSR respective REQEDIT.This is
not surprising, because article criticism and suggestions respective requests tend to occur in
the beginning of a discussion. The two reference features have not proven to be useful, since
the relational information was already covered by the indentation feature. The subjective
quality of the lexical features seems to be correlated with the inter-annotator agreement
of the respective labels. Features for labels with low agreement contain many n-grams
without any recognizable semantic connection to the label. For labels with good agreement,
the feature lists almost exclusively contain meaningful lexical cues.

6.6.3 Evaluation and Error Analysis

We used the SEWD corpus as a test bed for identifying the best system configuration which
we then also apply to the larger EWD corpus using the label mapping shown in figure 6.6.
On the EWD corpus, we only train classifiers for labels on the turn level, but use the topic
level labels as a filter to only include turns about the article content while discarding mere
meta discussions (REFOBJ-META).

Table 6.9 gives an overview of the performance of all learning algorithms per label on
the SEWD corpus as well as the performance of the final ensemble classification pipeline
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Label
Naive
Bayes

J48 SMO Best

CM .68 .48 .66 .68
CW .70 .20 .56 .70
CU .66 .35 .59 .66
CS .67 .67 .75 .75
CL .70 .66 .73 .73
COBJ .78 .51 .63 .78
CO .61 .06 .39 .61

PSR .72 .70 .76 .76
PREF .76 .41 .64 .76
PFC .70 .62 .73 .73
PPC .74 .82 .85 .85

IP .83 .93 .93 .93
IS .79 .86 .85 .86
IC .67 .32 .59 .67

ATT+ .61 .65 .72 .72
ATTP .72 .25 .62 .72
ATT- .52 .30 .52 .52

Macro average .70 .52 .68 .73
Micro average .74 .75 .80 .82

Table 6.9: F1-Scores for all classifiers trained on
the balanced dataset from the SEWD-corpus ob-
tained with 10-fold cross-validation. Best refers
to our final ensemble classification pipeline.

evaluated on 10-fold cross validation. Naive Bayes performed surprisingly well and showed
the best macro averaged scores among the three learners while SMO showed the best micro
averaged performance. We furthermore compare our results to two random baselines and
to the performance of the human annotators (cf. figure 6.10). While baseline 1 assigns labels
according to their frequency distribution in the unbalanced dataset, baseline 2 assigns the
labels randomly on the balanced dataset. Our final classifier outperformed the baselines on
all labels.

The comparison with the human performance shows that our system is able to reach
the human performance. In most cases, the annotation agreement is reliable, and so are
the results of the automatic classification. For the labels CU and CO, the inter-annotator
agreement is low. The comparatively good performance of the classifiers on these labels
shows that the instances do have shared characteristics that make automatic classification
possible but they might not be salient enough for human raters to pick up on in manual
annotation.

On the EWD corpus, we employ the best configuration obtained on the SEWD corpus.
Due to the small number of instances available for the REQMAINT label, we exclude it from
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Figure 6.10: F1-Scores for the classification pipeline (Best ), the human performance and baseline
performance on the SEWD corpus. Baseline 1 assigns labels according to their frequency distribu-
tion in the unbalanced dataset, while baseline 2 assigns labels at random on the balanced dataset.

the experiments, since the amount of data is not sufficient for training a classifier with
it. While the classifiers trained on the full dataset only achieve an average performance
of F1 = 0.56, training on a balanced dataset improves the performance to an average of
F1 = 0.78, comparable to the results we achieved on SEWD. This was unexpected, because
the inter-annotator agreement was, on average, substantially lower on EWD than on SEWD,
which also suggested a lower performance in the automatic classification task. These results
debilitate the concern that our approachmight not be suitable for long turns and shows that
even larger contributions can be reliably tagged with dialog acts labels. Table 6.10 shows
an overview of the classifier performance both on the undersampled, balanced dataset and
the full, unbalanced dataset, while figure 6.11 compares it to the performance of the human
annotation task and the same two baselines used on the SEWD corpus.

To our knowledge, none of the related work on discourse analysis of Wikipedia Talk
pages performed automatic dialog act classification. However, there has been previous
work on classifying speech acts in other discourse types. Kim et al. (2010a) use Support
Vector Machines (SVM) and Transformation Based Learning (TBL) for the automatic assign-
ment of five speech acts to posts taken from student online forums. They report individual
F1-scores per label which result in a macro average of 0.59 for SVM and 0.66 for TBL. Cohen
et al. (2004) classify speech acts in emails. They train five binary classifiers using several
learners on 1,375 emails and report F1 scores per speech act between 0.44 and 0.85.

Despite the larger tagset, we achieved an average F1-score of 0.82 on the SEWD corpus
and 0.78 on the EWD corpus, which compares to the top results in the related work. In fu-
ture work, the performance on the dialog act classification task can be further improved by
leveraging the higher flexibility of the DKPro TC framework, a flexible generalization of the
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Label Unbalanced Balanced

CRITCOMPL .44 .75
CRITACC .51 .69
CRITLANG .49 .77
CRITSUIT .47 .76
CRITSTRUCT .60 .85
CRITAUTH .38 .72
ACTF .66 .77
ACTP .71 .87
REQEDIT .53 .77
ATTPOS .69 .81
ATTNEG .53 .78

Macro average .55 .78
Micro average .56 .78

Table 6.10: F1-Scores for the classifiers trained
on the EWD-corpus obtained with 10-fold
cross-validation both on a balanced and the
full, unbalanced dataset.

FlawFinder system described in chapter 5, in order to integrate a larger number of features
and utilize the parameter optimization capabilities of the framework to tune the hyperpa-
rameters of the classifiers trained. Also, the use of sequence classification algorithms might
be able to make better use of the sequential nature of the discourse than our solution, in
which we incorporate features from the previous and the next turn into the representation
of each turn to be classified.

6.7 Application Scenario

In order to illustrate the applicability of dialog act classification in Wikipedia Talk page
discussions for the information qualitymanagement process, we now discuss an application
scenario in which the dialog act classifiers are used in a practical setting.

As we have established before, the global discussion activities in the English Wikipedia
are on the rise and constitute the main outlet for work coordination in the open Wikipedia
community (Schneider et al., 2010; Stvilia et al., 2008). At the same time, the unstructured
nature of the Talk pages causes the entry barrier for new community members while exac-
erbating the navigation through the growing discussion archives.

An enhancement of the discussion subsystem in the MediaWiki software could drasti-
cally improve the user experience and increase the productivity of the community. This has
often been suggested both by community members and researchers and activities in this
area are ongoing130. Moving from simple Wiki pages as a medium for communication to
a dedicated, structured discussion system requires substantial investments on the software

130http://www.mediawiki.org/wiki/Flow_Portal
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Figure 6.11: F1-Scores for the classifiers trained on the balanced and unbalanced dataset, the human
performance and two random baselines on the EWD corpus. Baseline 1 assigns labels according to
their frequency distribution in the unbalanced dataset, while baseline 2 assigns labels at random
on the balanced dataset.

side. Furthermore, content created before the change to a new discussion system will not
be available in a structured form in the new system and the information thus might become
unavailable in the long run.

Our dialog segmentation algorithm as well as the dialog act classifiers can be used as
a more lightweight solution by integrating them either as a MediaWiki plugin or an ex-
ternal third-party script (see the Wikimedia Labs discussed in chapter 3.6.2) on top of the
existing system. This way, it is possible to provide a more structured representation of the
discourse with added meta information that can be used for filtering and searching through
the discussion archives. Rather than providing only a pure chronological listing of all past
discussions, an augmented user interface allows users to select the aspects of the discourse
they are interested in.

6.8 Chapter Summary

In this chapter, we discussed how the information on Wikipedia article Talk pages can
be leveraged for information quality management purposes by automatically tagging the
contributions with dialog act labels capturing the coordination efforts regarding article im-
provement.

We first presented an approach to reliably segment the unstructured discourse into in-
dividual discussion threads and user turns with the help of the revision history. Thereby,
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we are able to retrieve additional meta information for each turn, such as the identity of its
author, which is not possible by relying on the optional user signatures alone as it has been
done in related work.

We furthermore present two corpora extracted from the Simple English Wikipedia and
the English Wikipedia, which we manually annotated with a novel annotation scheme
aimed at reflecting information quality management activities.

After a detailed analysis of these corpora and the manual annotations, we employed
the data for training machine learning classifiers in order to automatically label unseen
turns with the dialog act labels from our scheme. We achieved an average cross-validated
performance of F1 = 0.82 on the smaller and simpler SEWD corpus while we reach an
average performance of F1 = 0.78 on the larger EWD corpus.

These results suggest that the classifiers can be utilized in practical systems aimed at
supporting the information quality management process in Wikipedia. For instance, the
dialog act information can be used to filter the unstructured discussions in order to identify
open issues. Furthermore, together with the segmentation algorithm presented before, it
can be used to improve access to the old discussions contained in the ever growing discus-
sion archives.
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Chapter 6. Dialog Analysis of Wikipedia Talk Pages
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Chapter 7

Summary and Conclusions

“We have finished the job, what shall we do with the tools?”

— Haile Selassie

Information quality management in open collaborative environments is a complex yet vital
task. In this work, we have approached the topic from the natural language processing
perspective with the overarching question how language technology can help to improve
quality management processes in large communities of open content production such as
Wikipedia and presented two use cases – quality flaw detection in Wikipedia articles and
dialog act analysis of article Talk pages. In this chapter, we give a brief summary of each
chapter and provide an outlook on future research directions.

7.1 Summary

Collaboration We discussed the foundations of open collaboration in chapter 2 and in-
troduced the main characteristics of collaborative writing, how it differs from individual
writing and how open online collaboration adds an additional level of complexity to the
writing task. We furthermore provided a brief description of successful systems for collab-
orative online writing with a particular focus on wiki technology.

Wikipedia In chapter 3, we then narrowed our focus on Wikipedia as one of the most
successful online platforms for open content production and discussed its main structures
and properties, its community and different approaches to process the large amounts of data
the resource contains. We established that the policies governing Wikipedia and shaping
it content are collaboratively defined and change over time. While large parts of these
policies are shared across the different language versions, each edition has an individual
take on the philosophy, which leads to a different culture in each Wikipedia.
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Chapter 7. Summary and Conclusions

Even though Wikipedia contains an almost incomprehensibly large set of rules and
guidelines, the basic principles can be boiled down to the five pillars of Wikipedia which
build the foundation for a soft security system. A unique characteristic of Wikipedia is the
revision history that is kept for every page and which allows keeping track of every change
ever made to the encyclopedia. At the same time, the revision history is the reason for the
large amount of data Wikipedia sums up to, which makes is difficult to process as a whole.

User communication is mainly performed on the Talk pages, an unstructured discus-
sion space in dedicated namespaces. Article Talk pages are used to coordinate the article
development and discuss the future fate of an article. User talk pages, on the other hand,
are used as the main means of communication between the users. There are different ways
to access Wikipedia ranging from direct access of the live databases via a web API over
manual processing of downloadable XML dumps to dedicated, database-driven program-
ming interfaces. The best solution depends on the applications’ need for data currency and
speed and is always a compromise.

While themain reason forWikipedia’s success is its policy that everyone can contribute,
the same policy also constitutes the greatest challenge. In order to establish Wikipedia as
a trustworthy and comprehensive reference work with a quality level equal to edited en-
cyclopedias, Wikipedia needs a quality management process that can cope with the almost
anarchic culture thatWikipedia is based on. Taking into account the unparalleled size of the
larger Wikipedia editions, a satisfactory solution can only be reached with computational
assistance.

Information Quality In chapter 4, we discussed the concept of information quality and
its application for information quality management. We have established that information
quality, in the broadest sense, is a measure of the “fitness for use” of an information entity
in a given application scenario. While it is not possible to define a single universal model
of information quality, the models differ in how far they have been adapted to a particu-
lar application, medium or user group. The notion of text quality refers to an information
quality model for textually represented information which particularly takes the writing
quality of a text into account. In order to construct an information quality model for Wiki-
pedia articles, we reviewed the existing mechanism for information quality management in
Wikipedia to gain an overview how the concept of quality is interpreted in this community.
Based on the widely accepted generic IQ model by Wang and Strong, we then described an
article quality model with 23 dimensions in four layers that particularly includes writing
quality as a major component. The role of this model is to provide a means of orientation
with respect to the aspects of quality that can be assessed with our proposed methods and
also show the gaps that remain.
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7.1. Summary

Quality Flaw Detection Chapter 5 contains one of the main contributions of this work.
We presented an approach to automatically identify quality flaws in Wikipedia articles
by means of cleanup template prediction. While cleanup templates are good proxies for
quality flaws and thus a viable resource for compiling quality flaw corpora as training data
for machine learning classifiers, we found that many templates exhibit a topic bias that
negatively influences the classifier performance and even biases manual analyses.

We found that certain templates exhibit a topical preference, i.e. they tend to occur
in articles about particular subjects, or even show a topical restriction, i.e. the templates
exclusively occur in articles about particular topics. This fact has to be taken into account
when sampling the data for quality flaw corpora in order to avoid a topic bias that influences
both any data analyses and machine learning classifiers trained on this data.

We therefore introduced an approach to extract reliable positive and negative training
instances from the article revision history which factors out the topics bias and improves
the overall data quality.

We furthermore presented a corpus of articles with neutrality and style flaws that has
been sampled with this technique. Our machine learning experiments on this corpus show
that the reliable classifiers tend to exhibit a lower cross-validated performance than the
classifiers trained on the biased datasets but the scores more closely resemble their actual
performance in the wild.

We closed the chapter by describing an approach for mining quality flaw corrections
from the revision history. This method can both be used to create a new parallel corpus of
flawed and unflawed language as well as for identifying quality flaws within articles rather
than just identifying flawed articles.

Dialog Analysis The second major contribution of this work was introduced in chapter 6,
where we discussed how the content of Wikipedia article Talk pages can be leveraged for
information quality management purposes by automatically tagging the user contributions
with dialog act labels capturing the coordination efforts regarding article improvement.

We first presented an approach to reliably segment the unstructured discourse into in-
dividual discussion threads and user turns with the help of the revision history. Thereby,
we are able to retrieve additional meta information for each turn, such as the identity of its
author, which is not possible by relying on the optional user signatures alone as it has been
done in related work.

We furthermore present two corpora extracted from the Simple English Wikipedia and
the English Wikipedia, which we manually annotated with a novel annotation scheme
aimed at reflecting information quality management activities.

After a detailed analysis of these corpora and the manual annotations, we employed
the data for training machine learning classifiers in order to automatically label unseen
turns with the dialog act labels from our scheme. We achieve an average cross-validated
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Chapter 7. Summary and Conclusions

performance of F1 = 0.82 on the smaller and simpler SEWD corpus while we reach an
average performance of F1 = 0.78 on the larger and more complex EWD corpus.

These results suggest that the classifiers can be utilized in practical systems aimed at
supporting the information quality management process in Wikipedia. For instance, the
dialog act information can be used to filter the unstructured discussions in order to identify
open issues. Furthermore, together with the segmentation algorithm presented before, it
can be used to improve access to old discussions contained in the ever growing discussion
archives.

7.2 Future Research Directions

In this final section, we identify the limitations of the current work and how they can be
addressed in future work. We furthermore identify future research directions that can build
upon the work presented in this thesis.

Connections between Article Discussions and Article Revisions. In this work, we have
discussed the applicability of dialog analysis of Wikipedia Talk pages for improving the in-
formation quality management process, in particular the work coordination aspects. How-
ever, the Talk pages are also an invaluable resource for gaining deeper insights into the col-
laborative writing process. The side-by-side development of the articles on the one hand
and the associated meta discussions on the other hand, which refer to evolution of the
article, are unparalleled information sources for analyzing the interaction between text
reception and production by the so-called prosumers. Prosumers are members of collab-
orative content production communities who switch between the roles of consumers and
producers of information. The interaction between these two processes has a unique im-
pact on the resulting content that has so far not been researched in detail due to a lack of
sufficient data. Bringing the dialog analysis together with related work on processing the
article revision history therefore promises a leap forward in understanding open collabora-
tion in writing. A first study on this topic has recently been carried out by Daxenberger and
Gurevych (2014), who utilize the Talk page segmentation approach presented in chapter 6
for creating their dataset. The authors achieve an accuracy of 0.86 in automatically identi-
fying corresponding pairs of article edits and discussion turns on the article Talk page with
the help of a machine learning classifier. In the future, such a system could be combined
with the dialog act tagset proposed in this thesis in order to obtain a more comprehensive
understanding of the relation between work coordination and edit activities.

Dialog Segmentation Accuracy and Speed. To the best of our knowledge, the dialog seg-
mentation algorithm introduced in chapter 6.4.1 was the first approach to go beyond mere
markup parsing and use the revision history of the Talk pages as an additional information
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7.2. Future Research Directions

source for the segmentation process. This enabled us to reflect phenomena such as discon-
tinuous turns or inserted replies, which is not possible with a markup based segmenter.
However, as the discussion pages get older and thus the revision history grows, the speed
of the segmentation drastically breaks down. While this is not a big issue for batch pro-
cessing, it impedes the applicability in a real time setting, for instance in order to improve
the Talk page presentation and organization on the client side without having to alter the
system setup on the wiki server.

Dialog Act Sequences and Co-Occurrences. In this thesis, we aimed to account for the
sequential aspects of the dialog by incorporating the text of the previous and next turn as
additional features for any given turn. However, this approach cannot make use of previous
classifier decisions when labeling a given turn with dialog acts. When classifying a turn, it
might not only be useful to look at the text of the previous turn, but also at the labels the
previous turn received. This can be achieved with a sequence classification approach, such
as Conditional Random Fields or Hidden Markov Chains, which can make better use of the
inter-turn dependencies. The same rationale also applies to dependencies between labels
within a given turn. That is, future work should also take into account label co-occurrences
in the classification task.

With a deeper incorporation of vertical (inter-turn) and horizontal (intra-turn) dialog
act patterns, it will be possible to develop models that can predict the future, i.e. the dialog
acts of the upcoming turns in a discussion. This, in turn, leads to interesting applications
such as predictingwhether a current thread is already resolved or demands further attention
of the community.

Granularity of Annotation Units. We have found that the granularity of the annotation
units used in the dialog act labeling task and the quality flaw recognition have a strong
impact on the reliability of the training data.

In the dialog act labeling task, we have used turns as basic annotation units. Each turn
is manually labeled with multiple dialog act labels. As we have discussed in chapter 6, this
is a viable approach for shorter turns, but turn-level annotation is subject to a low inter-
annotator agreement if long turns are involved. By extension, these turns also cause prob-
lems in the automatic classification tasks, since they introduce too much noise for a precise
classification. Future work should therefore consider to use utterances as annotation units
instead of labeling whole turns. This will add the additional complexity of utterance seg-
mentation which is a research topic of its own. While some sentences can contain multiple
utterances, a single utterance could also span multiple sentences. It has to be evaluated if
the added complexity is justified by the possible gains in data reliability.

In the quality flaw prediction task, we have used cleanup labels assigned to wholeWiki-
pedia articles by Wikipedia users. Thus, the annotation units are whole documents. The
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annotation study in chapter 5 has shown that a human annotator can have problems in reli-
ably identifying the presence of a single flaw in a whole document. The ability to decide the
presence or absence of a flaw in an article strongly depends on the nature of the flaw and
how it is represented in the article. While it is fairly easy to identify a bad article structure
from looking at the article as a whole, it is more difficult to reliably identify grammatical
mistakes in a longer text. Thus, structural flaws might be well represented by article-scope
flaw markers while fine-grained flaws, such as language errors, should be marked directly
in the text as inline- or section-scope flaws. We have already presented a method to per-
form the quality flaw prediction task on the sentence level in chapter 5.6 and encourage
future work to extend on this approach. It has to be decided for each flaw individually on
which level of granularity the given flaw should be handled.

Domain Adaptation of Quality Flaw Classifiers. This work is largely focused on Wiki-
pedia as its main subject of analysis. While Wikipedia is one of the largest online com-
munities for open, collaborative content production, it is not the only platform that could
benefit from technology assisted information qualitymanagement. A yet unsolved question
is how we can extrapolate the knowledge gained in the context of Wikipedia for improving
information quality assessment processes in other collaborative platforms. In a first step,
the approaches presented in this work could be transferred to platforms based on a similar
technology, i.e. the MediaWiki software. In a further step, the models learned onWikipedia
can be adapted to other resources. For example, quality flaw detection could not only be
carried out onWikipedia articles but on any arbitrary texts such as online news articles e.g.
in order to detect neutrality issues or biased language. However, it is safe to assume that not
all of the community defined quality flaw labels will generalize equally well. Furthermore,
Wikipedia specific features have to be avoided. With an appropriate domain adaptation
technique, the Wikipedia quality flaw data could be bootstrapped to be used outside of the
wiki context.

Integration in the Quality Management Process. The focus of this work was to provide
the theoretical foundations for improving information quality management with the help
of natural language processing. However, putting theory to practical use often is a complex
task on its own. We have already sketched in chapter 6.7 how the dialog act classification
system may be integrated in Wikipedia as a user script hosted on the Wikimedia Labs
platform. The quality flaw classifiers could furthermore be used to automatically identify
quality problems to be reviewed by experienced Wikipedia users. This would reduce the
manual labor necessary in the review process for featured and good articles and might
eventually lead to an increase of articles marked as excellent content.
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Appendix

A Open Source Software

In this section, we give an overview of the open source software that has been developed in
the course of this thesis or that is based on work presented in this thesis. Since open source
projects are joint efforts of several developers, the descriptions in this chapter indicate the
own contribution to each project and how it relates to the work presented in this thesis.

A.1 Wikipedia Revision Toolkit

The Wikipedia revision history is a valuable resource for NLP and has been used for a wide
variety of applications such as spelling error detection, text simplification, text summa-
rization or paraphrasing (Ferschke et al., 2013). Even though article revisions are available
from the official Wikipedia revision dumps, accessing this information on a large scale is
still a computationally intensive and thus complex task. This is due to two main problems.
First, the revision dump contains all revisions as full text. Whenever a single character is
changed in an article, the whole article is stored again in full. This results in a massive
amount of data which requires bulk processing on powerful hardware and does not easily
allow structured access to arbitrary content. Second, without an efficient API for accessing
article revisions on a large scale, any research endeavor has to reinvent the wheel whenever
information from the revision history is needed.

In order to tackle these two problems, we have developed the RevisionMachine as part
of the Wikipedia Revision Toolkit (WRT)131. First, we describe our solution to the storage

131Beside the RevisionMachine, the WRT also contains the TimeMachine which re-creates arbitrary earlier
states of Wikipedia from a single revision dump (Ferschke et al., 2011). The software is open source and
available under http://jwpl.googlecode.com. It is a joint effort of several developers under the lead of
Oliver Ferschke and Torsten Zesch. The individual contributions are recorded in the public SVN history on
Google Code and visualized on http://www.ohloh.net/p/jwpl. The algorithms used in the RevisionMachine
are based on preliminary work by Kulessa (2008)
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problem. Second, we present several use cases of the RevisionMachine, and show how its
API simplifies experimental setups.

A.1.1 Revision Storage

As each revision of a Wikipedia article stores the full article text, the revision history ob-
viously contains a lot of redundant data. The RevisionMachine makes use of this fact and
utilizes a dedicated storage format which stores a revision only by means of the changes
that have been made to the previous revision. For this purpose, we have tested existing
diff libraries, like Javaxdelta132 or java-diff133, which calculate the differences between two
texts. However, both their runtime and the size of the resulting output was not feasible for
the given size of the data. Therefore, we have developed our own diff algorithm, which is
based on a longest common substring search and constitutes the foundation for our revision
storage format.

The processing of two subsequent revisions can be divided into four steps:

– First, the RevisionMachine searches for all common substrings with a user-defined
minimal length.

– Then, the revisions are divided into blocks of equal length. Corresponding blocks
of both revisions are then compared. If a block is contained in one of the common
substrings, it can be marked as unchanged . Otherwise, we have to categorize the kind
of change that occurred in this block. We differentiate between five possible actions:
Insert, Delete, Replace, Cut and Paste134. This information is stored in each block and
is later on used to encode the revision.

– In the next step, the current revision is represented by means of a sequence of actions
performed on the previous revision.
For example, in the adjacent revision pair

r1 ∶This is the very first sentence!
r2 ∶This is the second sentence

r2 can be encoded as
REPLACE 12 10 ’second’

DELETE 31 1

– Finally, the string representation of this action sequence is compressed and stored in
the database.

With this approach, we achieve to reduce the demand for disk space of an EnglishWikipedia
dump from June 15, 2010 containing all article revisions from 5, 470 GB to only 96 GB, i.e.
132http://javaxdelta.sourceforge.net
133http://www.incava.org/projects/java/java-diff
134Cut and Paste operations always occur pairwise. In addition to the other operations, they can make use of

an additional temporary storage register to save the text that is being moved.
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Figure A.1: Configuration GUI for the RevisionMachine

by 98%, while maintaining direct access to any data record, which is a key advantage over
compressing the dump as a whole with a standard compression algorithm. The converted
and compressed data records are stored in a MySQL database, which provides sophisticated
indexing mechanisms for high-performance access to the data.

Obviously, storing only the changes instead of the full text of each revision trades in
speed for space. Accessing a certain revision now requires to reconstruct the text of the
revision from a list of changes. As articles often have several thousand revisions, this might
take too long. Thus, in order to speed up the recovery of the revision text, every n-th
revision is stored as a full revision. A low value of n decreases the time needed to access
a certain revision, but increases the demand for storage space. We have found n = 1000
to yield a good trade-off. If hard disk space is no limiting factor, the parameter can be set
to 1 or another small number to avoid the compression of the revisions and maximize the
performance. This parameter, among a few other possibilities to fine-tune the process, can
be set in a graphical user interface provided with the RevisionMachine. (see figure A.1).

A.1.2 Revision Access

After the converted revisions have been stored in the revision database, the database can
either be used stand-alone in in combination with additional data extracted from the Wiki-
pedia dump by the JWPL (Zesch et al., 2008). The latter option makes it possible to combine
the possibilities of the RevisionMachine with other components like the JWPL parser for
the MediaWiki syntax.

In order to set up the RevisionMachine, it is only necessary to provide the configuration
details for the database connection (see listing A.1). Upon first access, the database user has
to have write permission on the database, as indexes have to be created. For later use, read
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/ / S e t up da t a b a s e connec t i on
D a t a b a s e C o n f i g u r a t i o n db = new D a t a b a s e C o n f i g u r a t i o n ( ) ;
db . s e t D a t a b a s e ( ” dbname ” ) ;
db . s e t H o s t ( ” hostname ” ) ;
db . s e t U s e r ( ” username ” ) ;
db . s e t P a s s w o r d ( ”pwd” ) ;
db . s e t L a n g u a g e ( L a n g u a g e . e n g l i s h ) ;
/ / C r ea t e API o b j e c t s
W i k i p e d i a w i k i = W i k i C o n n e c t i o n U t i l s . g e t W i k i p e d i a C o n n e c t i o n ( db ) ;
R e v i s i o n I t e r a t o r r e v I t = new R e v i s i o n I t e r a t o r ( db ) ;
R e v i s i o n A p i r e v A p i = new R e v i s i o n A p i ( db ) ;

Listing A.1: Setting up the RevisionMachine

/ / I t e r a t e over a l l r e v i s i o n s o f a l l a r t i c l e s
whi l e ( r e v I t . h a s N e x t ( ) ) {

R e v i s i o n rev = r e v I t . n e x t ( )
rev . g e t T i m e s t a m p ( ) ;
rev . g e t A r t i c l e I D ( ) ;
/ / p r o c e s s r e v i s i o n . . .

}

Listing A.2: Iteration over all revisions of all articles

permission is sufficient. Access to the RevisionMachine is achieved via two API objects. The
RevisionIterator allows to iterate over all revisions inWikipedia. The RevisionAPI grants ac-
cess to the revisions of individual articles. In addition to that, theWikipedia object provides
access to JWPL functionalities.

In the following, we describe three use cases of the RevisionMachine API, which demon-
strate how it is easily integrated into experimental setups.

Processing all article revisions in Wikipedia The first use case focuses on the utilization
of the complete set of article revisions in a Wikipedia snapshot. Listing A.2 shows how
to iterate over all revisions. Thereby, the iterator ensures that successive revisions always
correspond to adjacent revisions of a single article in chronological order. The start of a new
article can easily be detected by checking the timestamp and the article id. This approach
is especially useful for applications in statistical natural language processing, where large
amounts of training data are a vital asset.

Processing revisions of individual articles The second use case shows how the Revision-
Machine can be used to access the edit history of a specific article. The example in listing A.3
illustrates how all revisions for the article Automobile can be retrieved by first performing
a page query with the JWPL API and then retrieving all revision timestamps for this page,
which can finally be used to access the revision objects.

Accessing the meta data of a revision The third use case illustrates the access to the meta
data of individual revisions. The meta data includes the name or IP of the contributor, the
additional user comment for the revision and a flag that identifies a revision as minor or
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/ / Get a r t i c l e with t i t l e ” Automobi le ”
P a g e a r t i c l e = w i k i . g e t P a g e ( ” Automobi le ” ) ;
i n t id = a r t i c l e . g e t P a g e I d ( ) ;
/ / Get a l l r e v i s i o n s f o r the a r t i c l e
C o l l e c t i o n < T i m e s t a m p > r e v i s i o n T i m e S t a m p s = r e v A p i . g e t R e v i s i o n T i m e s t a m p s ( id ) ;
f o r ( T i m e s t a m p t : r e v i s i o n T i m e S t a m p s ) {

R e v i s i o n rev = r e v A p i . g e t R e v i s i o n ( id , t ) ;
/ / p r o c e s s r e v i s i o n . . .

}

Listing A.3: Accessing the revisions of a specific article

/ / Meta da t a p rov ided by the Rev i s i onAP I
S t r i n g B u f f e r s = new S t r i n g B u f f e r ( ) ;
s . a p p e n d ( ” The a r t i c l e has ”+ r e v A p i . g e t N u m b e r O f R e v i s i o n s ( p a g e I d ) + ” r e v i s i o n s \ n ” ) ;
s . a p p e n d ( ” I t has ”+ r e v A p i . g e t N u m b e r O f U n i q u e C o n t r i b u t o r s ( p a g e I d ) + ” unique c o n t r i b u t o r s \ n ” ) ;
s . a p p e n d ( r e v A p i . g e t N u m b e r O f U n i q u e C o n t r i b u t o r s ( pageId , t r u e ) + ” a r e r e g i s t e r e d u s e r s \ n ” ) ;
/ / Meta da t a p rov ided by the Rev i s i o n o b j e c t
s . a p p e n d ( ( rev . i s M i n o r ( ) ? ” Minor ” : ” Major ” ) + ” r e v i s i o n by : ”+ rev . g e t C o n t r i b u t o r I D ( ) ) ;
s . a p p e n d ( ” \ nComment : ” + rev . g e t C o m m e n t ( ) ) ;

Listing A.4: Accessing the meta data of a revision

major. Listing A.4 shows how the number of edits and unique contributors can be used to
indicate the level of edit activity for an article.

A.2 DKPro Text Classification Framework

The DKPro Text Classification Framework (DKPro TC)135 is an open source text classification
system that emerged from an enhancement and generalization of the FlawFinder system
that was described in chapter 5.4.

For the quality flaw prediction task, we required a system for exploring a wide range
of machine learning algorithms while allowing to automatically optimize the hyperparam-
eters for each algorithm, the configuration of the preprocessing and, above all, providing
easily extensible feature extraction capabilities. We already described in chapter 5.4.1 how
we designed the FlawFinder system to fulfill all of the above requirements for the particular
task of flaw detection.

DKPro TC takes the FlawFinder approach to the next level by scaling to generic super-
vised learning problems involving textual data. The main goal of DKPro TC is to move the
focus away from the mere technical aspects of machine learning experiments and rather
stress the importance of higher level design decisions and the development of an expres-
sive feature set for the task at hand. Therefore, DKPro TC automates as many aspects of the

135The software is open source and available under http://dkpro-tc.googlecode.com. It is a joint effort
of several developers under the lead of Johannes Daxenberger, Oliver Ferschke and Torsten Zesch and
based on the FlawFinder system developed by Oliver Ferschke in the course of this thesis. The indi-
vidual contributions are recorded in the public SVN history on Google Code and visualized on http:

//www.ohloh.net/p/dkpro-tc
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Single-label Multi-label Regression

Document Mode ⋅ Spam Detection
⋅ Sentiment Detection

⋅ Text Categorization
⋅ Keyphrase Assignment ⋅ Text Readability

Unit Mode ⋅Word Sense Disambiguation
⋅ Sentiment Aspect Detection ⋅ Dialog Act Tagging ⋅Word Difficulty

Pair Mode ⋅ Paraphrase Identification
⋅ Textual Entailment ⋅ Relation Extraction ⋅ Text Similarity

Table A.1: Supervised learning scenarios supported by DKPro TC with exemplary NLP applications

experiment workflow as possible while still letting the researcher control and monitor any
aspect of the process.
At the time of writing, DKPro TC supports three different experiment modes

– In document mode , each input document is treated as an individual entity to be clas-
sified, e.g. an email classified as spam or ham.

– In unit mode , each input document contains several units to be classified. It is usually
not possible to split the document into separate documents, because the context of
each unit needs to be preserved, e.g. in word sense disambiguation with Lesk (Lesk,
1986).

– The pair mode is intended for problems which require a pair of texts as input, e.g. a
pair of sentences to be classified as paraphrase or non-paraphrase.

Eachmode can either be employed to perform a binary classification task, a multi-label clas-
sification task or a regression problem. Table A.1 gives an overview of exemplary machine
learning tasks that can be solved with the individual combinations of experiment modes
and learning problems.

The overall concept of DKPro TC is similar to the original FlawFinder system but has
been refined and generalized in several aspects. The system architecture can be separated
into the following six components which we will describe briefly in the remainder of this
section.

WorkflowEngine Like FlawFinder, DKPro TC uses theDKPro Lab (Eckart de Castilho and
Gurevych, 2011) as a runtime environment, which allows to define configurable, task-based
experiment workflows. Most of the modules described in the remainder of this section are
implemented as Lab-Tasks which each contain a single UIMA pipeline. All tasks are wired
together in the experiment definition in order to setup the overall experiment workflow.
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Each task can furthermore be parameterized in oder to control the execution of the in-
ner NLP pipeline. This way, different settings for the UIMA processing components can be
employed thus enabling the researcher to identify an optimal configuration of the exper-
iment. The DKPro Lab thereby makes sure that intermediate output is not unnecessarily
recalculated if the parameters for the given task did not change since the last execution.

In order to shield the user from the complexity of the task definitions and task wiring,
several standard application scenarios, such as machine learning with cross validation or
train/test evaluation, are already included in the framework and can be used out of the box.

Reading Input Data In order to make a dataset available to the DKPro TC framework, a
UIMA reader has to be created that converts the dataset into the UIMA Common Analysis
Structure (CAS). Depending of the experiment mode, the DKPro TC framework further-
more requires the user to define the gold standard labels for each classification unit in an
outcome annotation which will be used for training and evaluation by the the framework.

Preprocessing Once the dataset has been imported intoDKPro TC, standard UIMA compo-
nents can be used to preprocess the data according to the requirements of the downstream
feature extractors. DKPro Core136, for example, provides a large collection of general pur-
pose NLP components that can be used for this purpose.

Feature Extraction Defining an expressive feature set is one of the main aspects of ma-
chine learning experiments. Feature extractors in DKPro TC are UIMA analysis engines
that can make use of all the annotations created by the preprocessing components. The
framework defines interfaces for the different available experiment modes which govern
the behavior of the extractors. That is, while a document feature extractor extracts fea-
tures from a whole CAS, unit feature extractors extract features only from a particular span
of text. Document pair extractors furthermore extract features from pairs of documents.
All features are stored in a global feature store which allows to make use of the extracted
features independent from the downstream machine learning algorithm or toolkit.

Supervised Learning DKPro TC does not provide own implementations of machine learn-
ing algorithm but rather contains interfaces to established machine learning toolkits. At
the time of writing, DKPro TC provides full support for the algorithms in the Weka Ma-
chine learning toolkit (Hall et al., 2009) while providing basic support for the classification
algorithms in the Mallet toolkit (McCallum, 2002). Multi label classification experiments
furthermore make use of the Mulan library (Tsoumakas et al., 2010). DKPro TC takes care
of preparing the data to fit the requirements of the chosen machine learning software

136http://dkpro-core-asl.googlecode.com
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Evaluation and Reporting Depending on the experiment mode, DKPro TC provides an
overview of the precision, recall and F1-scores achieved with each experiment configura-
tion. It furthermore provides the option to record confusion matrices, list the actual pre-
dictions assigned to each document by the classifiers and give an overview of the feature
rankings if a feature selection algorithm had been employed. The user is furthermore free
to attach addition report modules to the experiment which can then record arbitrary addi-
tional information.

B Annotation Guidelines

In the following sections, we reproduce the annotation guidelines provided to the annota-
tors of the SEWD and EWD corpora. The guidelines have been reformatted and shortened,
where appropriate. In addition to these documents, the annotators received additional in-
structions and training on demand.

B.1 Annotation guidelines for the SEWD corpus

In contrast to the EWD corpus, the annotation of the SEWD corpus was carried out by two
annotators who were mainly trained orally without providing an exhaustive annotator’s
manual. The annotators were furthermore supervised during a training period that pre-
ceded the annotation task. In this training period, a small, set of Talk pages was annotated.
Afterwards, the annotations were discussed with the instructor and the annotators were
asked to justify all of their decisions. The Talk pages annotated in the pre-study have not
been included in the SEWD corpus. The annotation process is further described in chapter 6.
Apart from the oral instructions, the annotators received the annotation scheme (see ta-
ble 6.4) along with the following short instructions:

CM

Some information, statement or utterance is not present in the article but should be present .

CW

Factual errors. Some information, statement or utterance should be corrected or rephrased
in order to be correct.

CU

Some information, statement or utterance is present in the article but should not be present ,
because it is unsuitable, unnecessary, obsolete, or too detailed.
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CS

Concerns the inner structure of the article or the position of the article within the wider
framework of Wikipedia. Also, merging or splitting of an article falls into this category.

CL

Unsuitable language or style, unclear formulation and any need for rephrasing in order to
express the facts correctly.

COBJ

Lack of neutrality (NPOV)

CO

Any kind of criticism not covered by the categories above including fuzzy criticism (“The
article/section is odd”).

PSR

– Could anybody do X?
– Please do X
– I would say somebody should X
– ”It should be neutral”
– ”The following should be clear”
– The section must be changed.

PREF

This class does not apply to citations or referencematerial included in the user contribution.
Generally, it is not applied when material is referenced to support the own statement. It
applies to an action of referencing or pointing to some external or internal subject matter,
e.g.

– Please see X .
– Please look at the section Y in the article
– As I have stated in a previous discussion

PFC

Commits to an action in the future, e.g.
– “I will change X .”
– “Changing X .”
– “Moving X ”
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PPC

Report of performed action, e.g.
– “Done”
– “Fixed”

IP

Covers any information providing acts, such as answers, replies, elaborations, statements,
announcements, quotes and comments.

IS

Any information seeking acts, such as questions. Note that rhetorical questions rarely seek
for information. Thus, they should just be labeled with IP. Also, requests or suggestions
alone do not always seek for information.

IC

Correcting an already established fact by providing the corrected fact. Contributionsmarked
with this label are usually also marked with IP.

B.2 Annotation guidelines for the EWD corpus

The annotation scheme used in this study was designed to reflect the ways Wikipedia users
coordinate article improvement. Your task as an annotator is to identify contributions that
point out faults or a lack of quality in the discussed article, offer solutions to the identi-
fied problems, and announce actions towards improving the article. At the same time, the
attitude of one participant to another on an interpersonal level is recorded.
The corpus consists of a selection of Wikipedia Talk pages taken from the English Wiki-
pedia from April 6, 2011. Each Talk page has been segmented into discussions (i.e. the
individual topics discussed on a talk page) and turns (i.e. the individual user contributions
within a discussion). In order to be selected for the corpus, a Talk page must have more
than one discussion and its size must be between 1,000 and 40,000 characters137. The Talk
pages are selected according to the cleanup templates that occur in the Talk page or in the
article associated with the Talk page. The same number of articles from each category –
distinguished article , flawed article and neutral article – is selected for the corpus.

B.2.1 General Guidelines

Theannotation scheme has not been designed to cover all possible aspects of human conver-
sation. It particularly focuses on the aspects described in the introduction. Consequently,
137The articles are categorized in six size-classes: 1,000-7,500, 7,501-14,000, 14,001-25,000, 25,001-27,000,

27,001-33,500, 33,501-40,000. From each class, the same number of articles is selected
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it might not be possible to label every contribution in a discussion. This is not a problem,
as we are only interested in the contributions about article improvement.
Discussions are labeled first on the discussion level, i.e. the level of an individual discussion-
topic in the discussion page (cf. section B.2.2) and then on the turn level, i.e. the level of
the individual user contributions (cf. section B.2.3).

Segmentation Errors
In some cases, discussions are not segmented correctly, e.g. contributions of more than
one user are treated as a single contribution. In those cases, the whole discussion can be
marked as rejected by assigning the ERROR label. As a consequence, the whole discussion is
rejected for further in the experiment (cf. section B.2.2).

Discontinuous Contributions
In some cases, contributions can be discontinuous, i.e. they may contain (correctly seg-
mented) inserted contributions by other authors. When selecting such a discontinuous
contribution, all parts belonging to the turn will be highlighted while leaving out the in-
serted contributions. The inserted contributions can be selected and annotated separately.
This should not be confused with segmentation errors (i.e. a selection that highlight the
contributions of more than one user at once)

Surface Structure vs. Intention
Do not be influenced too much by the surface structure of the text, i.e. do not give too
much attention to the individual sentence types (question, statement). What matters is the
content and the intention of each contribution. A “question” like “Shouldn’t the invention of
the transistor be given a lot more attention? ” is not just a request for information, but (also)
criticism regarding a lack of detail and a suggestion to expand the information.

Certainty and Uncertainty
Certainty and uncertainty are not covered by the annotation scheme, so “I thought that
FACTX ” or “It might be the case that FACTX ” are treated the same way as “FACTX ”.

The Role of the Topic Title
When labeling the first contribution in a discussion, you should also include the topic title
in your analysis. In most cases, the discussion title has been written by the first contributor
and contains additional information which might even be necessary to interpret the first
turn. The title can be seen as part of the first contribution.
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Figure B.2: Example for a segmentation error displayed in the MMAX2 annotation tools

Repetition
If a user repeats a statement that has already been already labeled e.g. as some kind of
criticism in an earlier contribution, it should be labeled again as such. For an example, see
section B.3. In that example, turn 3 paraphrases/repeats the criticism from Turn 1 (“GDP is
wrong and he/she knows it“) Consequently, it has to be labeled the same way as the criticism
in Turn 1. The same is true for the other label categories besides criticism.

B.2.2 Discussion Level

ERROR: Segmentation Errors
If a discussion was not segmented correctly, it might be problematic to annotate the user
contributions. In that case, the ERROR label should be assigned. The discussion is then re-
jected for further use in this annotation experiment. No further annotation has to be per-
formed on this discussion. A strong indicator for a segmentation error would be the pres-
ence of a user signature of some user Y WITHIN the contribution of some user X. (Because
the signature suggests a contribution boundary that was missed by the parser). However,
if there are signatures of X inside a contribution of X, it does not pose a problem. This is
most like due to an aggregation of several subsequent contributions by the same author
into a single turn. Wrong author attribution (i.e. the case that the correct author for a
contribution could not be found) does not qualify for this label.

REFOBJ: Reference Object
The “Reference Object” category defines the main focus of a discussion. This category is the
only non-binary one. Only one of the three possible labels can be chosen for an individual
discussion.

PART: Article Part The focus of the discussion is an individual aspect or part of the article,
e.g. the discussion of a particular defect, lack of quality, missing fact
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WHOLE: Whole Article The focus of the discussion is the “article as a whole” and not a
single detail of the article or an individual fact.

Examples
– Article protection
– Discussion page protection
– Article vandalism
– User bans
– Article status (featured, good, stub)

META:Meta Discussion The discussion is completely detached from the article (Off-Topic)
or refers to resources outside of Wikipedia.

B.2.3 Turn Level

Article Criticism
All labels in this section refer to a contributions mentioning a lack of quality in one of six
categories. They do not only apply to contributions explicitly stating criticism (e.g. “FACTX

is missing” ), but also to contribution implicitly stating subjects of improvement, for example
– suggestions for improvement: “FACTX should be added”
– implicit suggestions for improvement: “shouldn’t FACTX be added?” )
– requests for improvement: “ARTICLEX states that 1+1=3. Please correct this.“ - this is

criticism regarding ”Accuracy and Correctness“, cf. CRITACC)

CRITCOMPL: Incompleteness or LackofDetail Themain content of the article is incomplete
and/or parts of the article are not detailed enough. Possible reasons for choosing this label

– Lack of detail
– Missing facts
– Missing images
– Other missing content
– Suggestions for content that should be added
– ”X needs clarification“

Not to be confused with
– Missing references: ⇒ CRITAUTH

– Missing links: ⇒ CRITSTRUCT

– Missing templates: ⇒ CRITSTRUCT

– Missing categories: ⇒ CRITSTRUCT

– Incorrect or obsolete content: ⇒ CRITACC

Note: This label does not apply to missing structural elements or references, only to the
main text body of the article.
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CRITACC: Lack of Accuracy, Correctness and Neutrality The article or part of the article
is inaccurate, incorrect or biased/not neutral. Possible reasons for choosing this label

– Wrong facts
– Erroneous content
– Content not up to date (real world has changed - content has to be updated)
– Inaccurate description
– NPOV (non-neutral point of view)
– Biased content
– Article is not objective
– ”Poor quality” (if no specific information is given about the reason)
– Wrong terminology used (in combination with CRITLANG)
– Passage not understandable (”What does X mean”) if there’s no indication that it’s

due to CRITLANG-issues or missing explanation (CIRTCOMPL)
Not to be confused with

– Unclear or fuzzy formulation: ⇒ CRITLANG (in some cases, both labels can be assigned
to one contribution)

– Missing facts or images⇒ CRITCOMPL

Note: In the actual discussion, this label might occur when people rephrase text from the
article. In this case, it must be determined whether the paraphrase was really made to
correct incorrect or inaccurate information (then this is the right label). If the paraphrase
was made to improve the language in order to make the statement more understandable or
less ambiguous, Language and Style (CRITLANG) is the correct label.

CRITLANG: Deficiencies in Language and Style The article or part of the article contains
bad language or style. Possible reasons for choosing this label

– Typing slips, language errors
– Language too complex
– Low readability, obscure language
– Too much use of foreign language
– Unclear formulation (the content might still be accurate and correct)
– Ambiguous formulation
– Inconsistent use of vocabulary: using different vocabulary for the same conceptwithin

the article or category
– Text is incohesive
– Text does not flow well
– Terminological issues (wrong terminology used): Depending on the context, it can

be combined with CRITACC

Not to be confused with
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– Incorrect or inaccurate statements: ⇒ CRITACC (in some cases, both labels can be
assigned to one contribution)

– Structural problems, formal issues(citation style), formatting issues: ⇒ CRITSTRUCT

Note: In the actual discussion, this label might occur when people rephrase text from the
article. In this case, it must be determined whether the paraphrase was really made to
improve the language in order to make the statement more understandable or less am-
biguous (then this is the right label). If the paraphrase was made to correct incorrect or
inaccurate information, Accuracy and Correctness (CRITACC) is the correct label.

CRITSUIT:Unsuitability The article or part of the article contains unsuitable content. Pos-
sible reasons for choosing this label

– Content redundancy
– Content irrelevant or outside the scope of the article
– Content too detailed
– Content of an image used in the article is unsuitable
– Quality of an image used in the article is unsuitable
– Media with unsuitable licence / non-free image
– Content that violates copyright (e.g. copy and paste-text)
– Vandalism

Not to be confused with
– Missing licence information: ⇒ CRITAUTH

CRITSTRUCT: Deficiencies in Structure, Organization and Visual Appearance The article
or part of the article has a bad structure or is visually not appealing or it is not correctly
placed and connected within the broader framework of Wikipedia. Possible reasons for
choosing this label

– Poor organization/structure of the article
– Content/sections should be rearranged/reordered
– Headings should be renamed
– Nonconformity to the suggested style guides
– Inconsistent usage of structures and styles: content is structured differently than in

similar articles
– Missing/inadequate/too many TEMPLATES
– Missing/inadequate/too many TAGS
– Missing/inadequate/too many CATEGORIES
– Missing/inadequate/too many LINKS
– Too many redlinks
– Dead (external) links
– Article should be split into several articles
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– Article should be merged with other article
– Cosmetic problems with the typesetting

Not to be confused with
– Incorrect language, typos: ⇒ CRITLANG

CRITAUTH: Lack of Authority The article lacks authority and verifiability or has (media)
licencing issues . Possible reasons for choosing this label

– Lack of supporting sources
– Plagiarism
– Lack of academic scrutiny of the sources (sources are given, but they are not reliable)
– Known bias of the sources
– Lack of references to original sources
– Lack of accessibility of original sources
– Claims or details in the article cannot be verified
– Contains uncited content
– Lack of proper licencing information (for media)

Not to be confused with
– NPOV (non-neutral point of view)⇒ CRITACC

– Media with unsuitable (non-free) licence⇒ CRITSUIT

Self Commitment
ACTF:Commitment to FutureAction This label relates to announcements of future article-
related actions. It is chosen if the author

– announces future commitment (I will do this)
– offers future commitment (I could do this. I can do this. If nobody else does it, I might

do it)

ACTP: Report of Past Action This label relates to reports of already performed article-
related actions. It is chosen if the author

– reports an action (e.g. ”I already fixed the error in the article“)
– uses a template like fixed or done

Requests
Request-labels do not cover all possible requests, like e.g. the request of a discussion con-
tributor that someone else should fix an error in the article. This ”implicit“ request is already
contained in the criticism labels and is not encoded again if the request is made explicitly.
The request labels only cover request that fit one of the following three classes.
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REQEDIT:Request for Article Edit This label is chosen if the author requests that the article
should be edited (e.g. to fix an error that was identified by a contribution with a CRIT* label.
Note: This label is used if discussion contributors ask the community to edit the article. If
the user announces to do the editing him/herself, the ACTF label should be assigned. If the
user reports an already performed action, the ACTP label should be assigned. If the requested
action is an admin or maintenance action and not a simple article edit, the REQMAINT label
should be assigned.

REQMAINT: Request for Admin/Maintenance Action This label is chosen if the author
– specifically requests an admin to protect/semiprotect the article
– specifically requests an admin to remove article protection
– specifically requests an admin or reviewer to review the article for promotion/demo-

tion (e.g. to featured / good status)
– specifically requests an admin to join two articles
– specifically requests an admin to split and article in two (or more) articles
– specifically requests an admin to move the article to a different namespace
– specifically requests other maintenance actions

Note: This label specifically addresses maintenance actions that cannot be performed by
normal users. Simple article edits or adding the article to a category are not covered by this
label (use REQEDIT for that). This label also includes the request for an article review by an
admin or reviewer to evaluate if the article should be promoted/demoted to featured/good
status!

Interpersonal
The interpersonal categories are only to be used if the attitude towards another participant
of the discussion is made explicit. It should only be used to characterize the attitude of an
author towards another user or their contributions and/or whether they agree or disagree
with other contributions. The labels are polar - states between positive or negative do not
exist. If such a case occurs, it should not get an Interpersonal label. If an author shows
positive attitude towards one user and negative attitude towards another user, both labels
can be assigned. The attitudes towards people not taking part in the discussion is not
covered by the annotation scheme and should not be labeled with Interpersonal labels.

ATTPOS: Positive Attitude / Support / Agreement This label is chosen if the author
– supports/agrees with the contribution/opinion/idea of another author
– confirms the contribution of another author
– accepts the contribution/opinion of another author (“I agree”, “You’re right”)
– compliments another author (“Good work”)
– praises another contribution or author
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– shows gratitude (“Thanks”)
– shows appreciation (“I like the idea that…”)

ATTNEG: Negative Attitude / Reject / Disagreement This label is chosen if the author
– rejects or objects to the contribution/opinion/idea of another author (either by ex-

plicitly expressing an opinion or by taking the counter-position)
– disagrees with the contribution/opinion/idea of another author (“I disagree”, “You are

wrong”)
– threatens another author (“If you don’t stop, I’ll report you”)
– dislikes another author or their contribution (“I am not fond of this way of thinking”)
– blames another author (“You messed up the article”)

B.2.4 Example

Figure B.3 shows a very short example discussion loaded into the annotation tool MMAX2.
The discussion only consists of 3 contributions. The following subsections show, how this
discussion should be annotated:

Figure B.3: Example discussion about the article Algeria in MMAX2

Discussion Level
The main focus of this discussion is a wrong figure in the article about Algeria . Thus, the
reference object of the discussion is PART. It can be argued that, as the discussion develops,
the focus changes towards blocking a “Troll” from the article, which would demand the
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label WHOLE, but the anchor of the whole discussion is the incorrect GDP value, so the final
label should be PART.
There are no segmentation errors in this discussion, so the ERROR label must not be assigned
(i.e. its value should remain false ).

Turn 1: 2010-12-01
The user criticizes a wrong figure in the article (CRITACC). The request of the user that some-
one should change the value is not modeled in the annotation scheme.

Turn 2: 2010-12-30
The user agrees with the contribution of the user in Turn 1 (ATTPOS). He reports that he has
corrected the error in the article (ACTP). He further requests that the article be protected,
which is a maintenance action (REQUMAINT).

Turn 3: 2011-01-12
The user in Turn 3 again request maintenance action, i.e. to block a user (REQUMAINT). He
further repeats the criticism mentioned in Turn 1, (CRITACC). The negative attitude towards
the “Troll” is not modeled in the annotation scheme, because the “Troll” takes not part in
the discussion.

B.2.5 Cases with unclear label assignments

Reference object cannot clearly be chosen
Some discussions contain contributionswith a clear PART focus and, at the same time, contri-
butions with a clear WHOLE focus. If the number of contributions that indicate one particular
reference object is much larger than the other, use the the one with the bigger support.
If this is not the case, use the label that you would choose when only reading the first
contribution of the discussion.

CRITACC or CRITLANG?
Sometimes, the boundaries between CRITACC and CRITLANG become fuzzy. For example, in
the contribution

How can the Tomb of the Unknown Soldier in Paris have ’inspired’ the Tomb of the
Unknown Soldier in Westminster Abbey? They were both done at the same time.

the lack of accuracy and correctness is caused by unclear formulation. In this case, both
labels can be assigned. This is also the case when the author discusses whether it is correct
to express something in a certain way, e.g. in this contribution
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Is it right to say ’the’ tomb of the Unknown soldier, shouldn’t that be the the French
tomb of the Unknown soldier or the tomb of the Unknown soldier in France ?

In most cases, however, you can decide for one of the two labels.

C Cleanup Templates in the English Wikipedia

This section lists all cleanup templates of the EnglishWikipedia as of 16 July 2012 according
to http://en.wikipedia.org/wiki/WP:TC excluding writing variants and synonymous tem-
plates listed in the “see also” sections of the template description pages. The functional
groups are based on the categorization in the original template listing, but have been adapted
where appropriate. Wherever possible, we assigned to each category the corresponding
quality dimensions defined in chapter 4. Since these assignments are done per category
and not per label, a category could contain outliers that do not fit the dimensions assigned
to the category.

General
cleanup, cleanup AfD, cleanup-remainder, cleanup-rewrite, cleanup-articletitle

Copy Edit (→ Grammaticality and Spelling, Word choice, Understandability, Conven-
tions)
copy edit, copy edit-section

Subject Specific
CIA, cleanup Congress Bio, cleanup-book, cleanup-chartable, cleanup-comics, cleanup-IPA,
cleanup-school, cleanup-university, game cleanup, game guide, hadith authenticity, local,
metricate, toLCleanup, USRD-wrongdir

Fiction
all plot, book-fiction, fiction, in-universe, plot, dubious conversion, need-IPA

Style of Writing (→ Tone, Conventions, Word Choice)
abbreviations, db-spam, buzzword, cleanup-tense, crystal, debate, editorial, essay-like, howto,
inappropriate person, like resume, news release, db-spam, news, release section, obituary,
pro and con list, repetition, review, story, technical, tone, travel guide, over-quotation, cap-
italization

Structure and format (→ Structure)
cleanup-reorganize, importance-section, section-diffuse, sections, spacing, lead missing,
format footnotes, sub-sections
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Amount of information (→ Amount of Information)
condense, duplication, too many see alsos, very long, lead too long, lead too short

Unwanted Content (→ Amount of Information, Value added, Connectivity)
cleanup-spam, Cleanup Red Link, close paraphrasing, copypaste, criticism section, external
links, further reading cleanup, in popular culture, MOS, non-free, NOT, overlinked, sched-
ule, trivia, contact information, spam link, off-topic

Context and detail (→ Amount of information, Complexity)
context, generalize, generalize-section, over detailed, specific

Expand and add (→ Completeness)
cleanup-biography, cleanup-weighted, expand section, formula missing descriptions, ISBN,
kmposts, mileposts, Lacking overview, missing information, biblio

Time-sensitive (→ Currency, Volatility)
out of date, recently revised, time-context, update, update after, clarify timeframe

Contradiction and Confusing (→ Understandability, Accuracy)
confusing, contradict, contradict-other, contradict-other-multiple, incoherent, incoherent-
topic, misleading, unclear date, contradiction-inline, expand, acronym, inconsistent, vague,

Importance and Notability (→ Value added)
notability, puffery

Accuracy (→ Accuracy)
disputed, disputed-section, dubious, clarify, bad unit conversions, bad summary, lead rewrite,
inadequate lead, expert-subject, Expert-talk, expert-verify

Neutrality (→ Neutrality)
advert, cherry picked, coat rack, COI, geographical imbalance, globalize, peacock, POV,
Neutrality, POV-check, POV-lead, POV-section, POV-title, recentism, unbalanced, undue,
weasel, peacock-inline, weasel-inline, editorializing, lopsided, POV-statement

Reliability, Reputation and Trustworthiness (→ Reputation)
verify credibility, unreliable medical source, unreliable sources, vague, verify source, syn,
original research, or, self-published, dubious, elucidate, examples, failed verification, self-
published inline
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Verifiability (→ Verifiability)
BLP IMDb refimprove, BLP sources, BLP sources section, BLP unsourced, citation style, ci-
tations broken, citations missing, cite check, cleanup-link rot, ibid, , better source, medref,
more footnotes, no footnotes, one source, page numbers improve, page numbers needed,
primary sources, refimprove, ref improve section, religious text primary, symbolism, third-
party, unreferenced, unreferenced section, film IMDb refimprove, attribution needed, by
whom, chronology, citation needed, citation broken, citation needed, citation needed (lead),
cite quote, clarify, copyvio link, dead link, disambiguation needed, full, medical citation
needed, nonspecific, page needed, quantify, registration required, request quotation, sea-
son needed, specify, subscription required, third-party-inline, volume needed, when, where,
which?, who, whom?, whosequote, why?, year needed, find sources, find sources 3, search

Categories (→ Categorization)
cat improve, category relevant?, category unsourced, , recategorize, uncategorized, uncat-
egorized stub

Images (→ Illustration)
cleanup-gallery, cleanup-images, image requested, reqdiagram, reqmap, reqscreenshot, too
many photos

Lists
cleanup-laundry, create-list, disputed-list, list fact, example farm, fictionrefs, in popular
culture, list to table, MOSLOW, prose

WikiTech (→ Connectivity)
cleanup-HTML, dead end, disambiguation cleanup, disambiguation, incoming links, more-
specific-links, orphan, wikify, shadowsCommons, prod

Infobox
infobox requested, newinfobox, ship infobox request, single infobox request, cleanup-infobox

Merge
Afd-merge from, afd-merged-from, Afd-merge to, merge, merge from, merge to, merged-
from, merged-to, merging, cleanup-combine,

Move
move header, move to userspace, movenotice, moveoptions, convert to SVG and copy to
Wikimedia Commons, copy to Meta, copy to Wikibooks, copy to Wikibooks, Cookbook,
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softredirect, copy to Wikimedia Commons, copy to Wikiquote, copy to Wikisource, copy
to Wikiversity, now Commons

Split (→ Structure)
cleanup split, split, split-apart, split dab, split section, split sections

Translations and Language issues (→ Grammaticality and Spelling, Understandability,
Word choice)
cleanup-translation, expand Spanish, not English, not English-inline, rough translation,
translated page, translatePassage, translation WIP, TWCleanup

Completeness (→ Completeness)
Stub138

138In addition to the generic stub template, topic topic specific stub-templates are available and more com-
monly used. A list can be found under http://en.wikipedia.org/wiki/WP:STUBSHORT
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